AI Article Synopsis

  • Two-dimensional perovskite materials, particularly lead-based ones, show great promise for future wide band gap devices due to their excellent optoelectronic properties.
  • However, the main challenges for commercial use are stability and the presence of toxic elements.
  • Using fluoro-benzene-based divalent ammonium cations and substituting Zn for Pb can enhance stability, leading to lead-free perovskites that perform well at higher temperatures, making them ideal for certain optoelectronic applications.

Similar Publications

Machine learning offers a promising avenue for expediting the discovery of new compounds by accurately predicting their thermodynamic stability. This approach provides significant advantages in terms of time and resource efficiency compared to traditional experimental and modeling methods. However, most existing models are constructed based on specific domain knowledge, potentially introducing biases that impact their performance.

View Article and Find Full Text PDF

Growth window optimization for large-size quasi-two-dimensional Dion-Jacobson type perovskites.

Chem Commun (Camb)

January 2025

Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China.

Article Synopsis
  • Quasi-2D DJ type perovskites show potential for X-ray detection but typically struggle with phase segregation and small crystal sizes.
  • Researchers synthesized large single crystals of the quasi-2D perovskite (3AMPY)(MA)PbBr using temperature-controlled methods, leading to enhanced properties.
  • The produced X-ray detector demonstrated impressive metrics, including high resistivity and sensitivity, indicating these materials could be key for future optoelectronic applications.
View Article and Find Full Text PDF

Two-dimensional (2D) chiral hybrid perovskites A2PbI4 (A: chiral organic ion) enable chirality controlled optoelectronic and spin-based properties. A+ organic sublattice induces chirality into the semiconducting [PbI4]2- inorganic sublattice through non-covalent interactions at organic-inorganic interface. Often, the A+ cations in the lattice have different orientations, leading to asymmetry in the non-covalent interactions.

View Article and Find Full Text PDF

Chiroptical Synaptic Perovskite Memristor as Reconfigurable Physical Unclonable Functions.

ACS Nano

December 2024

Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.

Physical unclonable functions (PUFs), often referred to as digital fingerprints, are emerging as critical elements in enhancing hardware security and encryption. While significant progress has been made in developing optical and memory-based PUFs, integrating reconfigurability with sensitivity to circularly polarized light (CPL) remains largely unexplored. Here, we present a chiroptical synaptic memristor (CSM) as a reconfigurable PUF, leveraging a two-dimensional organic-inorganic halide chiral perovskite.

View Article and Find Full Text PDF

Electrically switchable second harmonic generation (SHG) is highly valuable in electro-optic modulators, which can be deployed in data communication and quantum optics. Coupling circular dichroism (CD) with an electrically controlled SHG process is advantageous because it enhances the signal transmission bandwidth and security while enabling multiple modulation modes for optical logic. However, ferroelectrically switchable chiral second-order nonlinearity is rarely reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!