Background: Comprehensive eye examinations for diabetic retinopathy is poorly implemented in medically underserved areas. There is a critical need for a widely available and economical tool to aid patient selection for priority retinal screening. We investigated the possibility of a predictive model for retinopathy identification using simple parameters.

Methods: Clinical data were retrospectively collected from 4, 159 patients with diabetes admitted to five tertiary hospitals. Independent predictors were identified by univariate analysis and least absolute shrinkage and selection operator (LASSO) regression, and a nomogram was developed based on a multivariate logistic regression model. The validity and clinical practicality of this nomogram were assessed using concordance index (C-index), area under the receiver operating characteristic curve (AUROC), calibration curves, decision curve analysis (DCA), and clinical impact curves (CIC).

Results: The predictive factors in the multivariate model included the duration of diabetes, history of hypertension, and cardiovascular disease. The three-variable model displayed medium prediction ability with an AUROC of 0.722 (95%CI 0.696-0.748) in the training set, 0.715 (95%CI 0.670-0.754) in the internal set, and 0.703 (95%CI 0.552-0.853) in the external dataset. DCA showed that the threshold probability of DR in diabetic patients was 17-55% according to the nomogram, and CIC also showed that the nomogram could be applied clinically if the risk threshold exceeded 30%. An operation interface on a webpage (https://cqmuxss.shinyapps.io/dr_tjj/) was built to improve the clinical utility of the nomogram.

Conclusions: The predictive model developed based on a minimal amount of clinical data available to diabetic patients with restricted medical resources could help primary healthcare practitioners promptly identify potential retinopathy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9849672PMC
http://dx.doi.org/10.3389/fendo.2022.1099302DOI Listing

Publication Analysis

Top Keywords

predictive model
12
diabetic retinopathy
8
medical resources
8
clinical data
8
developed based
8
diabetic patients
8
model
5
clinical
5
predictive
4
diabetic
4

Similar Publications

Background: Recent research has revealed the potential value of machine learning (ML) models in improving prognostic prediction for patients with trauma. ML can enhance predictions and identify which factors contribute the most to posttraumatic mortality. However, no studies have explored the risk factors, complications, and risk prediction of preoperative and postoperative traumatic coagulopathy (PPTIC) in patients with trauma.

View Article and Find Full Text PDF

Importance: Chronic obstructive pulmonary disease (COPD) is often undiagnosed. Although genetic risk plays a significant role in COPD susceptibility, its utility in guiding spirometry testing and identifying undiagnosed cases is unclear.

Objective: To determine whether a COPD polygenic risk score (PRS) enhances the identification of undiagnosed COPD beyond a case-finding questionnaire (eg, the Lung Function Questionnaire) using conventional risk factors and respiratory symptoms.

View Article and Find Full Text PDF

Purpose: Chemoradiation-induced lymphopenia is common and associated with poorer survival in multiple solid malignancies. However, the association between chemoradiation-related lymphopenia and survival outcomes in rectal cancer is yet unclear. The objective of this study was to evaluate the prognostic impact of lymphopenia and its predictors in patients with rectal cancer undergoing neoadjuvant chemoradiation.

View Article and Find Full Text PDF

Aim: o point out how novel analysis tools of AI can make sense of the data acquired during OL and OC diagnosis and treatment in an effort to help improve and standardize the patient pathway for these disease.

Material And Methods: ultilizing programmed detection of heterogeneus OL and OC habitats through radiomics and correlate to imaging based tumor grading plus a literature review.

Results: new analysis pipelines have been generated for integrating imaging and patient demographic data and identify new multi-omic biomarkers of response prediction and tumour grading using cutting-edge artificial intelligence (AI) in OL and OC.

View Article and Find Full Text PDF

Background: Hematologic changes after splenectomy and hyperthermic intraperitoneal chemotherapy (HIPEC) can complicate postoperative assessment of infection. This study aimed to develop a machine-learning model to predict postoperative infection after cytoreductive surgery (CRS) and HIPEC with splenectomy.

Methods: The study enrolled patients in the national TriNetX database and at the Johns Hopkins Hospital (JHH) who underwent splenectomy during CRS/HIPEC from 2010 to 2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!