Alfalfa (), serves as a legume with high drought tolerance, is a major forage crop with a high biomass of production. However, the molecular mechanism of Alfalfa in response to drought stress are still unclear. We constructed the first full-length transcriptome for Alfalfa root. 21.53Gb clean data were obtained by further data filtering, in which incorporate 566,076 reads of Insert (ROI), and 409,291 full length reads non-Chimeric (FLNC) sequences. Combined with second-generation sequencing (SGS), there were 2615, 6011, and 4617 differentially expressed genes (DEGs) in three comparisons. KEGG pathway analysis showed enrichment of ribosome, glutathione metabolism, and biosynthesis of amino acids are among the DEGs. The majority of transcription factors (TFs) from DEGs were AP2/ERF-ERF (37), C2H2 (32), and bHLH (22) bZIP (22), followed by C3H (19), MYB (18), WRKY (18), GRAS (16), and NAC (15). 32 C2H2 genes were differentially expressed in three groups. In addition, TFs annotated as C3H (19), MYB (18), GRAS (16), and NAC (15) also changed significantly in expression in the three comparisons. We found 24 genes participate in the abscisic acid (ABA) and auxin hormone signaling pathway in response to drought stress, and monitored the expression patterns of these related genes. The present study enhanced our understanding of the genetic diversity and complexity, and provides greater insight into the fundamental transcriptome reprogramming of Alfalfa under drought.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9848396PMC
http://dx.doi.org/10.3389/fgene.2022.1086356DOI Listing

Publication Analysis

Top Keywords

response drought
12
drought stress
12
full-length transcriptome
8
differentially expressed
8
three comparisons
8
c3h myb
8
gras nac
8
drought
5
transcriptome roots
4
roots response
4

Similar Publications

The present study has evaluated different soybean genotypes to understand the salt and drought tolerance mechanisms based on physiological traits (photosynthesis, stomatal conductance, chlorophyll, and cell membrane stability), antioxidant enzymes (superoxide dismutase, catalase, and peroxidase), reactive oxygen species (HO and O ), osmolytes (glycine betaine, proline, and Na/K), plant water relations (relative water content, water potential, and solute potential) and expression of related genes (, , , , , , , and ). The experiment was conducted in a two-factorial arrangement using randomized complete block design (RCBD) with genotypes as one factor and salt, drought, and control treatments as the other factor. All physiological traits, relative water content, and water potential decreased significantly in all soybean genotypes due to individual and combined treatments of drought and salt stress, with significantly less decrease in soybean genotypes G4620RX, DM45X61, and NARC-21.

View Article and Find Full Text PDF

Introduction: Drought stress severely hampers seedling growth and root architecture, resulting in yield penalties. Seed priming is a promising approach to tolerate drought stress for stand establishment and root development.

Methods: Here, various seed priming treatments, .

View Article and Find Full Text PDF

Identification of the cysteine-rich transmembrane module CYSTM family in upland cotton and functional analysis of GhCYSTM5_A in cold and drought stresses.

Int J Biol Macromol

December 2024

Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050051, Hebei, China. Electronic address:

Abiotic stress poses adverse impacts on cotton production, raising demands for a better understanding of stress-response mechanisms and developing strategies to improve plant performance to cope with stress. CYSTM (Cysteine-rich transmembrane module) is a widely distributed and conserved family in eukaryotes that performs potential functions in stress tolerance. However, CYSTM genes and their role in stress response is uncharacterized in cotton.

View Article and Find Full Text PDF

The role of trehalose metabolism in plant stress tolerance.

J Adv Res

December 2024

College of Forestry and Grasslands, Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agriculture University, Changchun 130118, China. Electronic address:

Background: Trehalose is a nonreducing disaccharide containing two glucose molecules linked through an α,α-1,1-glycosidic bond. This unique chemical structure causes trehalose levels to fluctuate significantly in plants under stress, where it functions as an osmoprotectant, enhancing plant resistance to stress. Previous studies have confirmed that the trehalose synthesis pathway is widely conserved across most plants.

View Article and Find Full Text PDF

Machine learning-assisted implantable plant electrophysiology microneedle sensor for plant stress monitoring.

Biosens Bioelectron

December 2024

Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, PR China; Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, PR China. Electronic address:

Plant electrical signals serve as a medium for long-distance signal transmission and are intricately linked to plant stress responses. High-fidelity acquisition and analysis of plant electrophysiological signals contribute to early stress identification, thereby enhancing agricultural production efficiency. While traditional plant electrophysiology monitoring methods like gel electrodes can capture electrical signals on plant surfaces, which face limitations due to the plant cuticle barrier, impacting signal accuracy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!