Unlabelled: Coastal cities are under severe threat from the impacts of climate change, such as sea-level rise, extreme weather events, coastal inundation, and ecosystem degradation. It is well known that the ocean, and in particular coastal environments, have been changing at an unprecedented rate, which poses increasing risks to people in small island developing states, such as Fiji. The Greater Suva Urban Area, the capital and largest metropolitan area of Fiji, is expected to be largely impacted by climate-related risks to its socio-economic, cultural, and political positions. In the face of these threats, creating a resilient city that can withstand and adapt to the impacts of climate change and promote sustainable development should be guided by a holistic approach, encompassing stakeholders from the government, the private sector, civil society organizations, and international institutions. This study assesses the risk profile of Suva city using an innovative risk information tool, the climate and ocean risk vulnerability index (CORVI), which applies structured expert judgment to quantify climate-related risks in data-sparse environments. Through comparative quantification of diverse risk factors and narrative analysis, this study identifies three priority areas for Suva's future climate-resilient actions: development of climate risk-informed urban planning, harmonized urban development and natural restoration, and enhancing the climate resilience to the tourism sector.

Supplementary Information: The online version contains supplementary material available at 10.1007/s11027-022-10043-4.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9838293PMC
http://dx.doi.org/10.1007/s11027-022-10043-4DOI Listing

Publication Analysis

Top Keywords

climate change
12
climate
8
holistic approach
8
climate ocean
8
ocean risk
8
risk vulnerability
8
vulnerability corvi
8
impacts climate
8
climate-related risks
8
risk
6

Similar Publications

Coupling tree-ring and geomorphic analyses to reconstruct the 1950s massive Glacier Lake Outburst Flood at Grosse Glacier, Chilean Patagonia.

Sci Total Environ

January 2025

Climate Change Impacts and Risks in the Anthropocene (C-CIA), Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland; dendrolab.ch, Department of Earth Sciences, University of Geneva, Geneva, Switzerland; Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, Switzerland.

Over recent decades, global warming has led to sustained glacier mass reduction and the formation of glacier lakes dammed by potentially unstable moraines. When such dams break, devastating Glacial Lake Outburst Floods (GLOFs) can occur in high mountain environments with catastrophic effects on populations and infrastructure. To understand the occurrence of GLOFs in space and time, build frequency-magnitude relationships for disaster risk reduction or identify regional links between GLOF frequency and climate warming, comprehensive databases are critically needed.

View Article and Find Full Text PDF

Background: Although agricultural health has gained importance, to date, much of the existing research relies on traditional epidemiological approaches that often face limitations related to sample size, geographic scope, temporal coverage, and the range of health events examined. To address these challenges, a complementary approach involves leveraging and reusing data beyond its original purpose. Administrative health databases (AHDs) are increasingly reused in population-based research and digital public health, especially for populations such as farmers, who face distinct environmental risks.

View Article and Find Full Text PDF

The impacts of degradation and deforestation on tropical forests are poorly understood, particularly at landscape scales. We present an extensive ecosystem analysis of the impacts of logging and conversion of tropical forest to oil palm from a large-scale study in Borneo, synthesizing responses from 82 variables categorized into four ecological levels spanning a broad suite of ecosystem properties: (i) structure and environment, (ii) species traits, (iii) biodiversity, and (iv) ecosystem functions. Responses were highly heterogeneous and often complex and nonlinear.

View Article and Find Full Text PDF

Dietary breadth in kangaroos facilitated resilience to Quaternary climatic variations.

Science

January 2025

College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia.

Identifying what drove the late Pleistocene megafaunal extinctions on the continents remains one of the most contested topics in historical science. This is especially so in Australia, which lost 90% of its large species by 40,000 years ago, more than half of them kangaroos. Determining causation has been obstructed by a poor understanding of their ecology.

View Article and Find Full Text PDF

Grazing can reduce wildfire risk amid climate change.

Science

January 2025

Valério D. Pillar is at the Laboratório de Ecologia Quantitativa, Departamento de Ecologia/Centro de Ecologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.

Over half of Earth's land surface is covered with fire-prone vegetation, with grassy ecosystems-such as grasslands, savannas, woodlands, and shrublands-being the most extensive. In the context of the climate crisis, scientists worldwide are exploring adaptation measures to address the heightened fire risk driven by more frequent extreme climatic conditions such as droughts and heatwaves, as well as by non-native plant invasions that increased fuel loads and altered fire regimes. Although fire is intrinsic to grassy ecosystems, rising exposure to wildfire smoke harms human health and the environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!