Biomedical implants and devices for tissue engineering in clinics, mainly made of polymers and stiff metallic materials, require possibly secondary surgery or life-long medicine. Biodegradable metals for biomedical implants and devices exhibit huge potential to improve the prognosis of patients. In this work, we developed a new type of biodegradable binary zinc (Zn) alloys with 16 rare earth elements (REEs) including Sc, Y, La to Nd, and Sm to Lu, respectively. The effects of REEs on the alloy microstructure, mechanical properties, corrosion behavior and and biocompatibility of Zn were systematically investigated using pure Zn as control. All Zn-RE alloys generally exhibited improved mechanical properties, and biocompatibilities compared to pure Zn, especially the tensile strength and ductility of Zn-RE alloys were dramatically enhanced. Among the Zn-RE alloys, different REEs presented enhancement effects at varied extent. Y, Ho and Lu were the three elements displaying greatest improvements in majority of alloys properties, while Eu, Gd and Dy exhibited least improvement. Furthermore, the Zn-RE alloys were comparable with other Zn alloys and also exhibited superior properties to Mg-RE alloys. The experiment using Zn-La, Zn-Ce, and Zn-Nd alloys as tibia bone implants in rabbit demonstrated the excellent tissue biocompatibility and much more obvious osseointegration than the pure Zn control group. This work presented the significant potential of the developed Zn-RE binary alloys as novel degradable metal for biomedical implants and devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9841038 | PMC |
http://dx.doi.org/10.1016/j.bioactmat.2023.01.004 | DOI Listing |
Acta Biomater
September 2024
Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China. Electronic address:
Biodegradable Zn alloys have significant application potential for hard-tissue implantation devices owing to their suitable degradation behavior and favorable biocompatibility. Nonetheless, pure Zn and its alloys in the as-cast state are mechanically instable and low in strength, which restricts their clinical applicability. Here, we report the exceptional mechanical, corrosion, and biocompatibility properties of hot-extruded Zn-5RE (wt.
View Article and Find Full Text PDFActa Biomater
March 2024
Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China. Electronic address:
Zinc (Zn) and some of its alloys are recognized as promising biodegradable implant materials due to their acceptable biocompatibility, facile processability, and moderate degradation rate. Nevertheless, the limited mechanical properties and stability of as-cast Zn alloys hinder their clinical application. In this work, hot-rolled (HR) and hot-extruded (HE) Zn-5 wt.
View Article and Find Full Text PDFBioact Mater
October 2023
Mechanical Engineering Program, Texas A&M University at Qatar, Education City, Doha, Qatar.
Magnesium alloys containing biocompatible components show tremendous promise for applications as temporary biomedical devices. However, to ensure their safe use as biodegradeable implants, it is essential to control their corrosion rates. In concentrated Mg alloys, a microgalvanic coupling between the α-Mg matrix and secondary precipitates exists which results in increased corrosion rate.
View Article and Find Full Text PDFMaterials (Basel)
May 2023
Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China.
The hot cracking behaviors of Mg-5Zn-Er ( 0.83, 1.25, 2.
View Article and Find Full Text PDFBioact Mater
June 2023
Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China.
Biomedical implants and devices for tissue engineering in clinics, mainly made of polymers and stiff metallic materials, require possibly secondary surgery or life-long medicine. Biodegradable metals for biomedical implants and devices exhibit huge potential to improve the prognosis of patients. In this work, we developed a new type of biodegradable binary zinc (Zn) alloys with 16 rare earth elements (REEs) including Sc, Y, La to Nd, and Sm to Lu, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!