Biomedical implants and devices for tissue engineering in clinics, mainly made of polymers and stiff metallic materials, require possibly secondary surgery or life-long medicine. Biodegradable metals for biomedical implants and devices exhibit huge potential to improve the prognosis of patients. In this work, we developed a new type of biodegradable binary zinc (Zn) alloys with 16 rare earth elements (REEs) including Sc, Y, La to Nd, and Sm to Lu, respectively. The effects of REEs on the alloy microstructure, mechanical properties, corrosion behavior and and biocompatibility of Zn were systematically investigated using pure Zn as control. All Zn-RE alloys generally exhibited improved mechanical properties, and biocompatibilities compared to pure Zn, especially the tensile strength and ductility of Zn-RE alloys were dramatically enhanced. Among the Zn-RE alloys, different REEs presented enhancement effects at varied extent. Y, Ho and Lu were the three elements displaying greatest improvements in majority of alloys properties, while Eu, Gd and Dy exhibited least improvement. Furthermore, the Zn-RE alloys were comparable with other Zn alloys and also exhibited superior properties to Mg-RE alloys. The experiment using Zn-La, Zn-Ce, and Zn-Nd alloys as tibia bone implants in rabbit demonstrated the excellent tissue biocompatibility and much more obvious osseointegration than the pure Zn control group. This work presented the significant potential of the developed Zn-RE binary alloys as novel degradable metal for biomedical implants and devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9841038PMC
http://dx.doi.org/10.1016/j.bioactmat.2023.01.004DOI Listing

Publication Analysis

Top Keywords

zn-re alloys
16
biomedical implants
12
implants devices
12
alloys
11
biodegradable binary
8
rare earth
8
mechanical properties
8
pure control
8
zn-re
6
systematic study
4

Similar Publications

Biodegradable Zn alloys have significant application potential for hard-tissue implantation devices owing to their suitable degradation behavior and favorable biocompatibility. Nonetheless, pure Zn and its alloys in the as-cast state are mechanically instable and low in strength, which restricts their clinical applicability. Here, we report the exceptional mechanical, corrosion, and biocompatibility properties of hot-extruded Zn-5RE (wt.

View Article and Find Full Text PDF

Zinc (Zn) and some of its alloys are recognized as promising biodegradable implant materials due to their acceptable biocompatibility, facile processability, and moderate degradation rate. Nevertheless, the limited mechanical properties and stability of as-cast Zn alloys hinder their clinical application. In this work, hot-rolled (HR) and hot-extruded (HE) Zn-5 wt.

View Article and Find Full Text PDF

Magnesium alloys containing biocompatible components show tremendous promise for applications as temporary biomedical devices. However, to ensure their safe use as biodegradeable implants, it is essential to control their corrosion rates. In concentrated Mg alloys, a microgalvanic coupling between the α-Mg matrix and secondary precipitates exists which results in increased corrosion rate.

View Article and Find Full Text PDF

The hot cracking behaviors of Mg-5Zn-Er ( 0.83, 1.25, 2.

View Article and Find Full Text PDF

Biomedical implants and devices for tissue engineering in clinics, mainly made of polymers and stiff metallic materials, require possibly secondary surgery or life-long medicine. Biodegradable metals for biomedical implants and devices exhibit huge potential to improve the prognosis of patients. In this work, we developed a new type of biodegradable binary zinc (Zn) alloys with 16 rare earth elements (REEs) including Sc, Y, La to Nd, and Sm to Lu, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!