We investigate how diffusion-limited mixing of a layered solute concentration distribution within a porous medium impacts bulk electrical conductivity. To do so, we perform a milli-fluidic tracer test by injecting a fluorescent and electrically conductive tracer in a quasi two-dimensional (2D) water-saturated porous medium. High resolution optical- and geoelectrical monitoring of the tracer is achieved by using a fluorimetry technique and equipping the flow cell with a resistivity meter, respectively. We find that optical and geoelectrical outputs can be related by a temporal re-scaling that accounts for the different diffusion rates of the optical and electrical tracers. Mixing-driven perturbations of the electrical equipotential field lines cause apparent electrical conductivity time-series, measured perpendicularly to the layering, to peak at times that are in agreement with the diffusion transport time-scale associated with the layer width. Numerical simulations highlight high sensitivity of such electrical data to the layers' degree of mixing and their distance to the injection electrodes. Furthermore, the electrical data correlate well with time-series of two commonly used solute mixing descriptors: the concentration variance and the scalar dissipation rate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9849185 | PMC |
http://dx.doi.org/10.1007/s11242-021-01607-0 | DOI Listing |
J Chem Phys
December 2024
Faculty of Computer Science, Dresden University of Technology, Dresden, Germany.
We show that the resolution-dependent loss of bimolecular reactions in spatiotemporal Reaction-Diffusion Master Equations (RDMEs) is in agreement with the mean-field Collins-Kimball (C-K) theory of diffusion-limited reaction kinetics. The RDME is a spatial generalization of the chemical master equation, which enables studying stochastic reaction dynamics in spatially heterogeneous systems. It uses a regular Cartesian grid to partition space into locally well-mixed reaction compartments and treats diffusion as a jump reaction between neighboring grid cells.
View Article and Find Full Text PDFResuscitation
November 2024
Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
Background: Elevated jugular bulb venous oxygen saturation (SjvO2) after cardiac arrest may be due to diffusion-limited oxygen extraction secondary to perivascular edema. Treatment with hyperosmolar solution (HTS) may decrease this edema and thus the barrier to oxygen diffusion. Alternatively, SjvO2 may rise when cerebral metabolic rate declines due to irreversible cellular injury, which would not be affected by HTS.
View Article and Find Full Text PDFPNAS Nexus
February 2024
Mechanics and Materials Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan.
With the advent of new media art, artists have harnessed fluid dynamics to create captivating visual narratives. A striking technique known as dendritic painting employs mixtures of ink and isopropanol atop paint, yielding intricate tree-like patterns. To unravel the intricacies of that technique, we examine the spread of ink/alcohol droplets over liquid substrates with diverse rheological properties.
View Article and Find Full Text PDFACS Macro Lett
November 2023
Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.
Photoredox-mediated metal-free ring-opening metathesis polymerization (MF-ROMP) is a convenient metal-free method to produce a variety of ROMP polymers. Transitioning MF-ROMP from a batch to a continuous flow process has yet to be demonstrated and could potentially benefit the production efficiency, safety, and modularity of reaction conditions. We designed and evaluated continuous flow and droplet flow setups and compared the results for MF-ROMP across a short series of common monomers.
View Article and Find Full Text PDFLab Chip
July 2023
Laboratory of Microsystems 2, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
The usage of microfluidics for automated and fast immunoassays has gained a lot of interest in the last decades. This integration comes with certain challenges, like the reconciliation of laminar flow patterns of micro-scale systems with diffusion-limited mass transport. Several methods have been investigated to enhance microfluidic mixing in microsystems, including acoustic-based fluidic streaming.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!