Microbial membrane lipid adaptations to high hydrostatic pressure in the marine environment.

Front Mol Biosci

Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Netherlands.

Published: January 2023

AI Article Synopsis

Article Abstract

The deep-sea is characterized by extreme conditions, such as high hydrostatic pressure (HHP) and near-freezing temperature. Piezophiles, microorganisms adapted to high pressure, have developed key strategies to maintain the integrity of their lipid membrane at these conditions. The abundance of specific membrane lipids, such as those containing unsaturated and branched-chain fatty acids, rises with increasing HHP. Nevertheless, this strategy is not universal among piezophiles, highlighting the need to further understand the effects of HHP on microbial lipid membranes. Challenges in the study of lipid membrane adaptations by piezophiles also involve methodological developments, cross-adaptation studies, and insight into slow-growing piezophiles. Moreover, the effects of HHP on piezophiles are often difficult to disentangle from effects caused by low temperature that are often characteristic of the deep sea. Here, we review the knowledge of membrane lipid adaptation strategies of piezophiles, and put it into the perspective of marine systems, highlighting the future challenges of research studying the effects of HHP on the microbial lipid composition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9853057PMC
http://dx.doi.org/10.3389/fmolb.2022.1058381DOI Listing

Publication Analysis

Top Keywords

effects hhp
12
membrane lipid
8
high hydrostatic
8
hydrostatic pressure
8
lipid membrane
8
hhp microbial
8
microbial lipid
8
lipid
6
piezophiles
6
hhp
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!