Dissolved oxygen (DO) and water temperature vary in coastal environments. In tropical regions, the ability of aquatic ectotherms to cope with hypoxia and high-temperature interactive effects is fundamental for their survival. The mechanisms underlying both hypoxia and thermal tolerance are known to be interconnected, therefore, the idea of cross-tolerance between both environmental stressors has been put forward. We investigated the combined role of hypoxia and temperature changes on the physiological responses of blue crab living in the southern Gulf of Mexico. We measured oxygen consumption, plasmatic biochemical indicators, total hemocyte count (THC), and antioxidant activity biomarkers in muscle and gill tissues of blue crab acclimated to moderate hypoxia or normoxia and exposed to a thermal fluctuation or a constant temperature, the former including a temperature beyond the optimum range. Animals recovered their routine metabolic rate (RMR) after experiencing thermal stress in normoxia, reflecting physiological plasticity to temperature changes. In hypoxia, the effect of increasing temperature was modulated as reflected in the RMR and plasmatic biochemical indicators concentration, and the THC did not suggest significant alterations in the health status. In both DO, the antioxidant defense system was active against oxidative (OX) damage to lipids and proteins. However, hypoxia was associated with an increase in the amelioration of OX damage. These results show that can modulate its thermal response in a stringent dependency with DO, supporting the idea of local acclimatization to tropical conditions, and providing insights into its potential as invasive species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9849389 | PMC |
http://dx.doi.org/10.3389/fphys.2022.1089164 | DOI Listing |
MethodsX
June 2025
Environmental Science and Engineering Program, The University of Texas at El Paso, El Paso, TX 79968, USA.
We describe an agent-based model purposed for social learning, which was developed by stakeholders, with the technical assistance of professional modelers, to facilitate stakeholder involvement in modeling issues related to the development of an adaptive environmental management plan for the Texas Gulf Coast (USA) estuaries. Stakeholders developed the model during six workshops that spanned a three-year period, and used the model to simulate the population dynamics (recruitment, growth, movement, and mortality) of blue crabs () in the Aransas and Copano Bays in response to various freshwater inflow and harvest scenarios. Results of scenarios representing normal, low, and high harvest levels indicated little effect on blue crab abundances, but harvests increased ≈75 % when harvest level was doubled and decreased ≈50 % harvest level was halved.
View Article and Find Full Text PDFBMC Genomics
January 2025
Key Laboratory of Ecological Protection and Restoration of Typical Plateau Wetlands, Bijie, Guizhou Province, 551700, China.
Background: Temperature is a key determinant of ectotherms distribution and growth. During the Eriocheir sinensis breeding process, it was observed that crabs in high latitudes and altitude areas with low temperatures undergo diapause, they would overwinter and continue to grow into three-year-old individuals, whose final body size is significantly larger than the normal two-year-old crabs. The hepatopancreas is responsible for maintaining the nutritional balance and energy required for the crab survival.
View Article and Find Full Text PDFJ Proteomics
January 2025
Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Department of Biology, University of Virginia, Charlottesville, USA.
Survival of brachyuran crabs is temperature-dependent and thermal stress promotes changes during molting. We aimed to decipher the impact of thermal stresses on the X-organ/sinus gland (XO/SG) complex, a temperature-sensitive neuroendocrine tissue involved in the molting regulation of Callinectes sapidus during the intermolt and premolt phases. We employed a proteogenomic approach using specimens subjected to control (24 °C), cold (19 °C), and heat (29 °C) temperatures.
View Article and Find Full Text PDFSci Rep
January 2025
A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russia.
J Environ Manage
January 2025
Department of Ecology and Coastal Management, Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Avda. República Saharaui, 2, Puerto Real, Cadiz, 11510, Spain; Associate Research Unit "Blue Growth", Spanish National Research Council (CSIC) - Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Cadiz, Spain. Electronic address:
The variability in trophic position and carbon isotopic signatures can provide information about their dietary flexibility and its ability to adapt to changing environmental conditions. The impact of the invasive blue crab Callinectes sapidus was assessed by estimating its trophic position and isotopic niche using stable isotopes (δ³C, δ⁵N, δ³⁴S) across different invaded Atlantic coastal areas. This study, the first of its kind in the eastern Atlantic range, reveals the crab's omnivorous behavior with a wide trophic position (TP = 2-4), consistent with findings from its native range.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!