Crop losses caused by climate change and various (a)biotic stressors negatively affect agriculture and crop production. Therefore, it is vital to develop a proper understanding of the complex response(s) to (a)biotic stresses and delineate them for each crop plant as a means to enable translational research. In plants, the improvement of crop quality by mA editing is believed to be a promising strategy. As a reaction to environmental changes, mA modification showed a high degree of sensitivity and complexity. We investigated differences in gene medleys between dark-induced leaf senescence (DILS) and developmental leaf senescence in barley, including RNA modifications active in DILS. The identified upregulated genes in DILS include RNA methyltransferases of different RNA types, embracing enzymes modifying mRNA, tRNA, and rRNA. We have defined a decisive moment in the DILS model which determines the point of no return, but the mechanism of its control is yet to be uncovered. This indicates the possibility of an unknown additional switch between cell survival and cell death. Discoveries of mA RNA modification changes in certain RNA species in different stages of leaf senescence may uncover the role of such modifications in metabolic reprogramming. Nonetheless, there is no such data about the process of leaf senescence in plants. In this scope, the prospect of finding connections between the process of senescence and mA modification of RNA in plants seems to be compelling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9846058PMC
http://dx.doi.org/10.3389/fpls.2022.1064131DOI Listing

Publication Analysis

Top Keywords

leaf senescence
20
rna modification
8
cell survival
8
senescence
6
rna
6
leaf
5
n-methyladenosine rna
4
modification
4
modification metabolic
4
metabolic switch
4

Similar Publications

Peptide hormones in plants.

Mol Hortic

January 2025

Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.

Peptide hormones are defined as small secreted polypeptide-based intercellular communication signal molecules. Such peptide hormones are encoded by nuclear genes, and often go through proteolytic processing of preproproteins and post-translational modifications. Most peptide hormones are secreted out of the cell to interact with membrane-associated receptors in neighboring cells, and subsequently activate signal transductions, leading to changes in gene expression and cellular responses.

View Article and Find Full Text PDF

Background: Regeneration is the preferred approach to restore the structure and function after tissue damage. Rapid proliferation of cells over the site of damage is integral to the process of regeneration. However, even subtle mutations in proliferating cells may cause detrimental effects by eliciting abnormal differentiation.

View Article and Find Full Text PDF

Genome-wide analysis of TCP family genes and their constitutive expression pattern analysis in the melon (Cucumis melo).

Genes Genomics

January 2025

Plant Molecular Breeding and Bioinformatics Laboratory, Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.

Background: TCP proteins are plant-specific transcription factors that play essential roles in various developmental processes, including leaf morphogenesis and senescence, flowering, lateral branching, hormone crosstalk, and stress responses. However, a comprehensive analysis of genome-wide TCP genes and their expression patterns in melon is yet to be done.

Objective: The present study aims to identify and analyze the TCP genes in the melon genome and understand their putative functions.

View Article and Find Full Text PDF

Wheat streak mosaic virus (WSMV; ) and Triticum mosaic virus (TriMV; ), the type members of the genera and , respectively, in the family , are economically important wheat viruses in the Great Plains region of the USA. Co-infection of wheat by WSMV and TriMV results in disease synergism. Wheat transcriptome from singly (WSMV or TriMV) and doubly (WSMV+TriMV) infected upper uninoculated leaves were analyzed by RNA-Seq at 9, 12, and 21 days postinoculation.

View Article and Find Full Text PDF

Common reed () is a cosmopolitan species, though its dieback is a worldwide phenomenon. In order to assess the evolutionary role of phenotypic plasticity in a successful plant, the values and plasticity of photophysiological traits of were investigated in the Lake Fertő wetlands at 5 sites with different degrees of reed degradation and along a seasonal sequence. On the one hand, along the established ecological degradation gradient, photophysiological traits of changed significantly, affecting plant productivity, although no consistent gradient-type trends were observed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!