As 2023 approaches, the COVID-19 pandemic has killed millions. While vaccines have been a crucial intervention, only a few effective medications exist for prevention and treatment of COVID-19 in breakthrough cases or in unvaccinated or immunocompromised patients. SARS-CoV-2 displays early and unusual features of micro-thrombosis and immune dysregulation that target endothelial beds of the lungs, skin, and other organs. Notably, anticoagulation improves outcomes in some COVID-19 patients. The protein transforming growth factor-beta (TGF-β1) has constitutive roles in maintaining a healthy microvasculature through its roles in regulating inflammation, clotting, and wound healing. However, after infection (including viral infection) TGF-β1 activation may augment coagulation, cause immune dysregulation, and direct a path toward tissue fibrosis. Dysregulation of TGF-β signaling in immune cells and its localization in areas of microvascular injury are now well-described in COVID-19, and such events may contribute to the acute respiratory distress syndrome and skin micro-thrombosis outcomes frequently seen in severe COVID-19. The high concentration of TGF-β in platelets and in other cells within microvascular thrombi, its ability to activate the clotting cascade and dysregulate immune pathways, and its pro-fibrotic properties all contribute to a unique milieu in the COVID-19 microvasculature. This unique environment allows for propagation of microvascular clotting and immune dysregulation. In this review we summarize the physiological functions of TGF-β and detail the evidence for its effects on the microvasculature in COVID-19. In addition, we explore the potential role of existing TGF-β inhibitors for the prevention and treatment of COVID-19 associated microvascular thrombosis and immune dysregulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9852847 | PMC |
http://dx.doi.org/10.3389/fcvm.2022.1054690 | DOI Listing |
J Prev Alzheimers Dis
January 2025
1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece; Department of Neurology, The Gertrude H. Sergievsky Center, Taub Institute for Research in Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA. Electronic address:
Importance: Aging is accompanied by immune dysregulation, which has been implicated in Alzheimer's disease (AD) pathogenesis. Individuals who are genetically predisposed to elevated levels of proinflammatory mediators might be at increased risk for AD.
Objective: To investigate whether genetic propensity for higher circulating levels of interleukin 6 (IL-6) is associated with AD risk.
Introduction Chronic stress is a major burden in our society and increases the risk for various somatic and mental diseases, in part via promoting chronic low-grade inflammation. Interestingly, the vulnerability for chronic stress during adulthood varies widely among individuals, with some being more resilient than others. For instance, women, relative to men, are at higher risk for developing typical stress-related diseases, including depression and post-traumatic stress disorder (PTSD).
View Article and Find Full Text PDFPoult Sci
January 2025
College of Animal Science and Technology, Northwest A&F University, Yangling 712100 Shaanxi, PR China. Electronic address:
DHAV-3 is one of the main causative agents of duck viral hepatitis (DVH), an acute and highly lethal infectious disease in duck industry. However, the understanding of the pathogenesis of this virus in ducklings is limited. To dissect the molecular characteristics associated with pathobiology of ducklings to DHAV-3, we applied single-cell RNA-sequencing approach to profile the transcriptome of 1.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Urology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China. Electronic address:
Purpose: Hypoxia ischemia (HI) injury is an inevitable risk factor in kidney transplantation. The inflammatory response is crucial in HI. Long non-coding RNAs (lncRNAs) are known to regulate inflammation and immunity, but their role in HI remains unclear.
View Article and Find Full Text PDFXi Bao Yu Fen Zi Mian Yi Xue Za Zhi
January 2025
Department of Hematology, Lanzhou University Second Hospital, Lanzhou 730000, China. *Corresponding authors, E-mail:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!