A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identification of PIK3CG as a hub in septic myocardial injury using network pharmacology and weighted gene co-expression network analysis. | LitMetric

Sepsis causes multiple organ injuries, among which the heart is one most severely damaged organ. Melatonin (MEL) alleviates septic myocardial injury, although a systematic and comprehensive approach is still lacking to understand the precise protective machinery of MEL. This study aimed to examine the underlying mechanisms of MEL on improvement of septic myocardial injury at a systematic level. This study integrated three analytic modalities including database investigations, RNA-seq analysis, and weighted gene co-expression network analysis (WCGNA), in order to acquire a set of genes associated with the pathogenesis of sepsis. The Drugbank database was employed to predict genes that may serve as pharmacological targets for MEL-elicited benefits, if any. A pharmacological protein-protein interaction network was subsequently constructed, and 66 hub genes were captured which were enriched in a variety of immune response pathways. Notably, PIK3CG, one of the hub genes, displayed high topological characteristic values, strongly suggesting its promise as a novel target for MEL-evoked treatment of septic myocardial injury. Importantly, molecular docking simulation experiments as well as in vitro and in vivo studies supported an essential role for PIK3CG in MEL-elicited effect on septic myocardial injury. This study systematically clarified the mechanisms of MEL intervention in septic myocardial injury involved multiple targets and multiple pathways. Moreover, PIK3CG-governed signaling cascade plays an important role in the etiology of sepsis and septic myocardial injury. Findings from our study provide valuable information on novel intervention targets for the management of septic myocardial injury. More importantly, this study has indicated the utility of combining a series of techniques for disease target discovery and exploration of possible drug targets, which should shed some light on elucidation of experimental and clinical drug action mechanisms systematically.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9842026PMC
http://dx.doi.org/10.1002/btm2.10384DOI Listing

Publication Analysis

Top Keywords

septic myocardial
32
myocardial injury
32
pik3cg hub
8
septic
8
myocardial
8
injury
8
weighted gene
8
gene co-expression
8
co-expression network
8
network analysis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!