Amongst omics technologies, metabolomics should have particular value in regulatory toxicology as the measurement of the molecular phenotype is the closest to traditional apical endpoints, whilst offering mechanistic insights into the biological perturbations. Despite this, the application of untargeted metabolomics for point-of-departure (POD) derivation via benchmark concentration (BMC) modelling is still a relatively unexplored area. In this study, a high-throughput workflow was applied to derive PODs associated with a chemical exposure by measuring the intracellular metabolome of the HepaRG cell line following treatment with one of four chemicals (aflatoxin B, benzo[a]pyrene, cyclosporin A, or rotenone), each at seven concentrations (aflatoxin B, benzo[a]pyrene, cyclosporin A: from 0.2048 μM to 50 μM; rotenone: from 0.04096 to 10 μM) and five sampling time points (2, 6, 12, 24 and 48 h). The study explored three approaches to derive PODs using benchmark concentration modelling applied to single features in the metabolomics datasets or annotated metabolites or lipids: (1) the 1st rank-ordered unannotated feature, (2) the 1st rank-ordered putatively annotated feature (using a recently developed HepaRG-specific library of polar metabolites and lipids), and (3) 25th rank-ordered feature, demonstrating that for three out of four chemical datasets all of these approaches led to relatively consistent BMC values, varying less than tenfold across the methods. In addition, using the 1st rank-ordered unannotated feature it was possible to investigate temporal trends in the datasets, which were shown to be chemical specific. Furthermore, a possible integration of metabolomics-driven POD derivation with the liver steatosis adverse outcome pathway (AOP) was demonstrated. The study highlights that advances in technologies enable application of in vitro metabolomics at scale; however, greater confidence in metabolite identification is required to ensure PODs are mechanistically anchored.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9968698PMC
http://dx.doi.org/10.1007/s00204-022-03439-3DOI Listing

Publication Analysis

Top Keywords

benchmark concentration
12
1st rank-ordered
12
vitro metabolomics
8
sampling time
8
time points
8
heparg cell
8
pod derivation
8
derive pods
8
aflatoxin benzo[a]pyrene
8
benzo[a]pyrene cyclosporin
8

Similar Publications

The current investigation explores tri-hybrid mediated blood flow through a ciliary annular model, designed to emulate an endoscopic environment. The human circulatory system, driven by the metachronal ciliary waves, is examined in this study to understand how ternary nanoparticles influence wave-like flow dynamics in the presence of interfacial nanolayers. We also analyze the effect of an induced magnetic field on Ag-Cu-/blood flow within the annulus, focusing on thermal radiation, heat sources, buoyancy forces and ciliary motion.

View Article and Find Full Text PDF

Predicting purification process fit of monoclonal antibodies using machine learning.

MAbs

December 2025

Department of Purification, Microbiology and Virology, Genentech Inc, South San Francisco, CA, USA.

In early-stage development of therapeutic monoclonal antibodies, assessment of the viability and ease of their purification typically requires extensive experimentation. However, the work required for upstream protein expression and downstream purification development often conflicts with timeline pressures and material constraints, limiting the number of molecules and process conditions that can reasonably be assessed. Recently, high-throughput batch-binding screen data along with improved molecular descriptors have enabled development of robust quantitative structure-property relationship (QSPR) models that predict monoclonal antibody chromatographic binding behavior from the amino acid sequence.

View Article and Find Full Text PDF

Oleaginous yeasts offer a promising sustainable alternative for producing edible lipids, potentially replacing animal and unsustainable plant fats and oils. In this study, we screened 11 oleaginous yeast species for their lipid profiles and identified Apiotrichum brassicae as the most promising candidate due to its versatility across different growth media. A.

View Article and Find Full Text PDF

Exploring the freshness biomarker and volatiles formation in stored pork by means of lipidomics and volatilomics.

Food Res Int

January 2025

Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China. Electronic address:

Raw pork is prone to oxidation and rancidity as it contains a high level of unsaturated lipid molecules. Reliable biomarkers to benchmark pork freshness and their formation have not been systematically investigated. The results indicated that the peroxide values, TVB-N and rancid volatiles dramatically increased in pork during the storage period (4 °C, 0-9 d).

View Article and Find Full Text PDF

Essential to the determination of the ultimate and flavor of jujube jam are various processing stages. Nevertheless, the alterations in metabolites and flavor chemistry throughout the processing of jujube jam are poorly comprehended. This research employed metabolomics, flavor analysis, and microbial indicators to examine the impact of distinct processing stages on the metabolites and flavor profile of jujube jam.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!