A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of glyphosate and ciprofloxacin exposure on enteric bacteria of tadpoles. | LitMetric

Effect of glyphosate and ciprofloxacin exposure on enteric bacteria of tadpoles.

Rev Argent Microbiol

Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina.

Published: June 2023

The high load of agrochemicals and antibiotics present in agricultural aquatic environments represents a risk for wildlife. Since enteric bacteria, which play a key role in the physiological functioning of their hosts, are sensitive to a wide variety of pollutants, their study allows to evaluate the health of organisms. This study aimed to evaluate the effects of commercial formulations of a glyphosate-based herbicide (GBH) and the antibiotic ciprofloxacin (CIP), individually and in mixture, on the bacterial diversity of the intestinal content of common toad (Rhinella arenarum) tadpoles. The diversity of cultivable fast-growing bacteria with low nutritional requirements was evaluated using classic microbiological tests and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry identification. Bacterial diversity varied among treatments. Taxa diversity increased in the GBH-treated group but decreased in the CIP-treated group. Remarkably, Yersinia spp. and Proteus spp. were only found in the GBH-treated group. The prevalence of Klebsiella spp. and Pseudomonas spp. decreased in the intestinal microbiota of the GBH-CIP-treated group. To our knowledge, this is the first report on the alteration of cultivable enteric bacteria of autochthonous tadpoles due to two pollutants of emerging concern. Our results demonstrate that R. arenarum tadpoles can be used as non-conventional model organisms for environmental pollution monitoring. Our preliminary findings would contribute to understanding how the presence of GBH and CIP in freshwaters may represent a threat to wildlife and human health by causing enteric dysbiosis of part of the bacterial community.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ram.2022.08.004DOI Listing

Publication Analysis

Top Keywords

enteric bacteria
12
bacterial diversity
8
arenarum tadpoles
8
gbh-treated group
8
glyphosate ciprofloxacin
4
ciprofloxacin exposure
4
enteric
4
exposure enteric
4
bacteria
4
tadpoles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!