Primary kinetic isotope effects (KIEs) provide unique insight into enzymatic reactions, as they can reveal rate-limiting steps and detailed chemical mechanisms. HIF hydroxylases, part of a family of 2-oxoglutarate (2OG) oxygenases are central to the regulation of many crucial biological processes through O-sensing, but present a challenge to monitor due to the large size of the protein substrate and the similarity between native and hydroxylated substrate. MALDI-TOF MS is a convenient tool to measure peptide masses, which can also be used to measure the discontinuous kinetics of peptide hydroxylation for Factor Inhibiting HIF (FIH). Using this technique, rate data can be observed from the mole-fraction of CTAD and CTAD-OH in small volumes, allowing noncompetitive H/D KIEs to be measured. Slow dCTAD substrate leads to extensive uncoupling of O consumption from peptide hydroxylation, leading to enzyme autohydroxylation, which is observed using UV-vis spectroscopy. Simultaneously measuring both the normal product, CTAD-OH, and the uncoupled product, autohydroxylated enzyme, the KIE on the microscopic step of hydrogen atom transfer (HAT) can be estimated. MALDI-MS analysis is a strong method for monitoring reactions that hydroxylate peptides, and can be generalized to other similar reactions, and simultaneous kinetic detection of branched products can provide valuable insight on microscopic KIEs at intermediate mechanistic steps.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.mie.2022.08.019 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!