[8. Development of Microwave Mammography and Clinical Research].

Nihon Hoshasen Gijutsu Gakkai Zasshi

Center for Mathematical and Data Sciences, Kobe University.

Published: January 2023

Download full-text PDF

Source
http://dx.doi.org/10.6009/jjrt.2023-2146DOI Listing

Publication Analysis

Top Keywords

development microwave
4
microwave mammography
4
mammography clinical
4
clinical research]
4
development
1
mammography
1
clinical
1
research]
1

Similar Publications

The advent of two-dimensional van der Waals materials is a frontier of condensed matter physics and quantum devices. However, characterizing such materials remains challenging due to the limitations of bulk material techniques, necessitating the development of specialized methods. Here, we investigate the superconducting properties of BiSrCaCuO flakes by integrating them with a hybrid superconducting microwave resonator.

View Article and Find Full Text PDF

A rapid, simple, and cost-efficient extraction method was developed for evaluating and screening benzo(a)pyrene (BaP) in tea samples by using high performance liquid chromatography (HPLC) with coupled fluorescence detector (FLD) in order to obtain the best extraction performance. In this study, it was observed that when optimized using microwave assisted extraction (MAE) method was performed twice for 2 min using 10 mL n-hexane: acetonitrile (1:3, v/v). The recoveries for BaP in tea were found to be 97 ± 2; 83 ± 8 and 92 ± 6%, respectively.

View Article and Find Full Text PDF

Triazole, a nitrogen-containing five-membered heterocycle with two isomeric forms, 1,2,3-triazole and 1,2,4-triazole, has proven to be a valuable component in the pharmaceutical domain. Owing to its widespread utility in drug development, pharmaceutical and medicinal chemistry, several synthetic methods have been explored, such as different catalytic systems, solvents, and heating methodologies in recent years. However, some methods were associated with several limitations, such as harsh reaction conditions, high temperatures, low atom economy, and long reaction times.

View Article and Find Full Text PDF

The development of a sensitive and selective silver nanoparticle assay for the quantitation of vitamin C (SNaP-C), as ascorbic acid (AA) and total ascorbic acid (TAA = AA + dehydroascorbic acid, DHAA), is described. Three assay parameters were investigated and optimized: (1) synthesis of silver nanoparticles (AgNPs) to produce a reliable enhanced localized surface plasmon resonance (LSPR) in the presence of specific added antioxidants; (2) ensuring long-term stability of AA and DHAA in aqueous solutions; and (3) SNaP-C assay conditions to allow for rapid analysis of samples (beverages) by monitoring the enhanced LSPR. The synthesis of AgNPs using soluble starch as a capping agent and d-arabinose as a reducing agent was optimized in a CEM Discover SP laboratory microwave.

View Article and Find Full Text PDF

Plasmonic heating by indium tin oxide nanoparticles: spectrally enabling decoupled near-infrared theranostics.

Nanoscale

January 2025

Nanomaterials for BioImaging Group (nanoBIG), Departamento de Física de Materiales, Universidad Autónoma de Madrid (UAM), Madrid 28049, Spain.

All-optical theranostic systems are sought after in nanomedicine, since they combine in a single platform therapeutic and diagnostic capabilities. Commonly in these systems the therapeutic and diagnostic/imaging functions are accomplished with plasmonic photothermal agents and luminescent nanoparticles (NPs), respectively. For maximized performance and minimized side effects, these two modalities should be independently activated, , in a decoupled way, using distinct near infrared (NIR) wavelengths: a radiation window wherein photon-tissue interaction is reduced.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!