Eco-friendly packaging material with intelligent colorimetric performance has been a requirement for food safety and quality. This work focused on a food packaging material from regenerated cellulose films that added the grape seed extract (GSE) and polyethylene glycol 200 (PEG). FTIR and SEM techniques were employed to prove the compatibility of GSE with cellulose matrix. The composite film showed an enhanced elongation at break (16.61 %) and tensile strength (33.09 MPa). The addition of PEG and GSE also improved the water contact angle of regenerated-cellulose film from 53.8° to 83.8°. Moreover, the composite films exhibited UV-blocking properties while maintaining adequate transparency. The GSE induced the regenerated films with a macroscopic change in color under different pH conditions. Furthermore, the loading of GSE slowed down the decomposition of strawberries and delayed the self-biodegradation compared with the control for more than 3 days and 18 days. The present study showed a regenerated cellulose film with acceptable mechanical and hydrophilia properties, pH-responsiveness, anti-decomposition, and delayed biodegradation performances, indicating a potential color sensor in food packaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.123290 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!