Antibiotics have garnered worldwide attention due to their omnipresence and detrimental effects on aquatic organisms, yet their potential relationships with multitrophic aquatic communities in natural rivers remain largely unknown. Here, we examined 107 antibiotics in water and sediment from an urban river in Chengdu, Sichuan province (China). The bacterial, algal, macroinvertebrates, and fish communities were synchronously measured based on the environmental DNA (eDNA) metabarcoding approach, and their relationships with antibiotics were further investigated. The results showed that the total antibiotic concentrations ranged from 1.12 to 377 ng/L and from 7.95 to 145 ng/g in water and sediment, respectively. Significant seasonal variations in the concentrations and compositions of antibiotics in water were observed. eDNA metabarcoding revealed great compositional variations of bacterial, algal, macroinvertebrates, and fish communities along the river, and antibiotics had significant negative relationships with the community diversities of aquatic organisms (p < 0.05) except for fish. Meanwhile, significant negative correlations were observed between antibiotic concentrations and the relative abundances of essential metabolism pathways of bacteria, e.g., energy metabolism (p < 0.05), carbohydrate metabolism (p < 0.05), and lipid metabolism (p < 0.01). Moreover, antibiotics demonstrated greater effects on the function of bacterial community compared with environmental variables. The findings highlight the significance of eDNA metabarcoding approach in revealing the relationships between aquatic communities and antibiotics, and call for further studies on the effects of antibiotics on multitrophic aquatic communities in natural waters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.161678 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
University Paris-Saclay, INRAE, HYCAR, 1 Rue Pierre-Gilles de Gennes, 10030, 92761, Antony Cedex, CS, France.
Constructed wetlands (CWs), originally designed to mitigate chemical water pollution, often host noticeable aquatic fauna. However, little is known about the impact of the contaminants circulating within CWs on this local fauna, questioning the role of CWs as ecological refuges or traps. We aimed to assess the potential of an agricultural CWs in northern France to act as an ecological trap for aquatic fauna and the potential consequences on wetland functioning.
View Article and Find Full Text PDFFEMS Microbiol Lett
January 2025
Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China.
Non-O1/non-O139 (NOVC) strains inhabit aquatic environments and sporadically induce human illnesses. This study involved the virulence and antimicrobial genetic characterization of 176 NOVC strains, comprising 25 from clinical samples and 151 from environmental sources, collected between 2021 and 2023. The antimicrobial susceptibility of the examined NOVC population was predominantly high, exhibiting only poor susceptibility to colistin, with 89.
View Article and Find Full Text PDFEnviron Int
January 2025
Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871 China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871 China. Electronic address:
Water diversion projects effectively mitigate the uneven distribution of water resources but can also influence aquatic biodiversity and ecosystem functions. Despite their importance, the impacts of such projects on multi-domain microbial community dynamics and the underlying mechanisms remain poorly understood. Utilizing high-throughput sequencing, we investigated bacterial, archaeal, and fungal community dynamics along the eastern route of the South-to-North water diversion project during both non-water diversion period (NWDP) and water diversion period (WDP).
View Article and Find Full Text PDFEnviron Int
January 2025
Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
Water reuse is a viable option to address temporal or structural water shortages. However, the ubiquitous presence of chemicals of emerging concern (CECs) in natural systems, especially the aquatic environment, represents a significant obstacle to water reuse and the receiving environment. Therefore, an extensive literature review was performed to identify current water reuse practices at field scale, reported types and levels of CECs and their associated risks for human and environmental health.
View Article and Find Full Text PDFWater Res
December 2024
Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600, Dübendorf, Switzerland. Electronic address:
Aerobic granular sludge (AGS) is usually considered to be a biofilm system consisting of granules only, although practical experience suggests that flocs and granules of various sizes co-exist. This study thus focused on understanding the contribution of flocs and granules of various sizes to nitrification in a full-scale AGS-based wastewater treatment plant (WWTP) operated as a sequencing batch reactor (SBR). The size distribution in terms of total suspended solids (TSS) and the distribution of the nitrifying communities and activities were monitored over 14 months.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!