Remote sensing of atmospheric and soil water stress on ecosystem carbon and water use during flash droughts over eastern China.

Sci Total Environ

Key Laboratory of Hydrometeorological Disaster Mechanism and Warning of Ministry of Water Resources/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China; School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China. Electronic address:

Published: April 2023

Flash droughts are often accompanied by large soil and atmospheric moisture deficits, and the concurrence of flash droughts and high temperature may have a great impact on the ecosystem. However, the stress of soil and atmospheric moisture deficits on carbon and water use of the ecosystem during flash droughts, especially during the drought periods with hot conditions, are unclear over a large region. In this study, we decoupled the atmospheric and soil water stress over eastern China by using vegetation productivity data and photosynthetically active radiation data retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS). The analysis is conducted during flash droughts and their sub-periods that are accompanied by high temperature and intense radiation from 2003 to 2018. The results showed that soil moisture (SM) stress was significantly greater than the vapor pressure deficit (VPD) stress on vegetation productivity in the humid regions of eastern China during flash droughts. However, high VPD controlled the water stress on light use efficiency (LUE) of vegetation over 55 % of the regions. For the hot periods of flash droughts, the area subjected to VPD stress on vegetation productivity significantly increased in semi-arid and semi-humid regions. The concurrent hot and drought conditions also increased water use efficiency (WUE) for most areas, which suggests that the reduction percentage of vegetation productivity is larger than that of evapotranspiration. Our research emphasized the severe impact of compound hot and flash drought conditions on vegetation carbon and water use from a remote sensing perspective.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.161715DOI Listing

Publication Analysis

Top Keywords

flash droughts
28
vegetation productivity
16
water stress
12
carbon water
12
eastern china
12
remote sensing
8
atmospheric soil
8
soil water
8
flash
8
china flash
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!