A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

On the potentials of sialic acid derivatives as inhibitors for the mumps virus: A molecular dynamics and quantum chemistry investigation. | LitMetric

On the potentials of sialic acid derivatives as inhibitors for the mumps virus: A molecular dynamics and quantum chemistry investigation.

Virus Res

Departments of Bioengineering and Mechanical Engineering, Molecular Cell Biomechanics Laboratory, University of California Berkeley, Berkeley, CA 94720, USA. Electronic address:

Published: March 2023

Mumps virus is an infectious pathogen causing major health problems for humans such as encephalitis, orchitis, and parotitis. Therefore, designing an inhibitor for this virus is of great medical and public health importance. With this goal in mind, we investigate the affinity of different sialic acid-based compounds (ligands) against the hemagglutinin-neuraminidase (HN) protein of the mumps virus, using a combination of molecular dynamics (MD) simulations and quantum chemistry calculations. Our MD simulation results indicate that the ligands form stable complexes with the HN protein through a combination of electrostatic, van der Waals (vdW), and hydrogen bond (H-bond) interactions, which the electrostatic interactions play a more important role in the complexation process. Based on the obtained results from the structural analysis Arg381, Arg291, and Arg49 play a key role in the binding site interactions with the different ligands, in comparison with other residues. There are some candidates such as Neu5Acα2-6Galβ1-4GlcNAcβ, Neu5Acα2-3Galβ1-3GlcNacβ1-3Galβ1-4Glc, and Neu5Acα2-6Galβ1-4GlcNAcβ1-3Galβ1-4Glc that form more stable complexes with the HN than the α2-3-Sialyllactose confirmed by the calculated Gibbs binding energies (-39.65, -46.93, and -36.49 kcal.mol, respectively). To investigate the relationship between the molecular properties of the selected compounds and their affinity to the HN receptor, density functional theory dispersion corrected (DFT-D3) calculations were employed. According to our DFT-D3 results, neutral sialic acid-based compounds have lower reactivity to the mumps virus than the negativity charge structures. Moreover, by increasing the electronic chemical potential (μ) the vdW and H-bond interactions between drugs and the HN protein increase. In other words, by elevating the electron tendency of the selected ligands their affinity to the mumps virus increases. Our quantum chemistry calculations reveal that in addition to the structural features the molecular properties of the drugs can play important roles in their affinity and reactivity against the virus. The results of this study can provide useful details to design new compounds or improve their properties against the mumps virus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10194267PMC
http://dx.doi.org/10.1016/j.virusres.2023.199050DOI Listing

Publication Analysis

Top Keywords

mumps virus
24
quantum chemistry
12
virus
8
molecular dynamics
8
sialic acid-based
8
acid-based compounds
8
chemistry calculations
8
form stable
8
stable complexes
8
h-bond interactions
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!