Wood-rotting fungi and their enzymatic systems represent promising biocatalysts for the removal of pharmaceuticals and personal care products (PPCPs) from wastewater. We designed a fungal wheel reactor (FWR) based on solid-state fermentation (SSF) of Trametes versicolor and a lignocellulosic substrate, which was used as an immobilization carrier for fungal biomass and the sole initial nutrient source for producing fungal oxidative enzymes. Three pharmaceutical and personal care products, acetaminophen, bisphenol A and carbamazepine, were spiked into the synthetic wastewater and the treatment was carried out under non-sterile conditions. Acetaminophen was completely removed from the FWR until laccase was observed. The acetaminophen removal efficiency was retrieved by replacing the fungal wheel with fresh SSF products. Bisphenol A and carbamazepine were removed via enzymatic activity and adsorption. When the fungal wheel was replaced, acetaminophen began to be completely removed, even after laccase depletion. The microbial community analysis indicated that the continuous removal of acetaminophen was mainly due to the high proportion of T. versicolor. The relative abundance of the co-occurring microbial community might be responsible for the divergence in acetaminophen removal between two of fungal wheel-replaced reactors. Overall, FWRs are promising tools for the removal of PPCPs by highly reactive enzymatic mechanisms as well as adsorption on the carrier surface. By replacing SSF and settled microbial communities, FWRs may continuously contribute to bioremediation over a long-term period.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2023.117316 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!