Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rice is a crucial staple food crop in many countries, yet, abiotic factors like salt and drought impact its growth. The Domain of Unknown Function 966 (DUF966) gene family may be crucial in how rice plants respond to abiotic stress. Our earlier research showed that overexpression of OsDSR2 (DUF966-stress repressive gene 2 in Oryza sativa) decreased resistance to salt and drought stress. To further understand how OsDSR2 negatively affects rice tolerance to salt and drought stress, transgenic rice plants with decreased OsDSR2 expression levels were created employing the RNAi technique. We investigated alterations in rice phenotype, physiology, and differentially expressed genes (DEGs) using a combination of physio-biochemical measurement and RNA-seq analysis. The results of the study demonstrated that rice seedling lines with OsDSR2 knockdown exhibited improved salt and drought stress tolerance. Statistical analysis revealed that the transgenic plants' survival rate (56-68%) was higher than the control plants (30%), in addition to a roughly 3 fold, 3.5 fold, 20% and 10.5% reduction in cell membrane permeability, malondialdehyde (MDA), superoxide anion radical (O) and hydrogen peroxide (HO) contents, respectively. However, the proline content and antioxidant enzymes (superoxide dismutase (SOD) and peroxidase (POD)) activities were considerably increased by about 5.5 fold, 3.5 fold, and 4.5 fold, respectively, at physiological levels. There were 115 up-regulated and 173 down-regulated DEGs in the leaves of the transgenic lines on the transcriptional regulation under the combined salt-drought stress. Among these, both up-regulation DEGs (e.g., OsHAK5, OsIAA25) and the down-regulation DEGs (e.g., OsbZIP23, OsERF48, OsAP2-39, etc.) may be related to the enhanced tolerance of the transgenic lines under combined salt-drought stress. This possibly depended on the involvement of abscisic acid (ABA) and indoleacetic acid (IAA) signaling pathways. These findings further confirmed that OsDSR2 negatively affected rice's ability to withstand salt and drought, suggesting that it could be a helpful gene for CRISPR-Cas9 technology-based genetic modification of rice's ability to withstand abiotic stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jplph.2023.153927 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!