Bayesian Inference for an Unknown Number of Attributes in Restricted Latent Class Models.

Psychometrika

Department of Statistics, University of Illinois at Urbana-Champaign, 725 South Wright Street, Champaign, IL, 61820, USA.

Published: June 2023

The specification of the [Formula: see text] matrix in cognitive diagnosis models is important for correct classification of attribute profiles. Researchers have proposed many methods for estimation and validation of the data-driven [Formula: see text] matrices. However, inference of the number of attributes in the general restricted latent class model remains an open question. We propose a Bayesian framework for general restricted latent class models and use the spike-and-slab prior to avoid the computation issues caused by the varying dimensions of model parameters associated with the number of attributes, K. We develop an efficient Metropolis-within-Gibbs algorithm to estimate K and the corresponding [Formula: see text] matrix simultaneously. The proposed algorithm uses the stick-breaking construction to mimic an Indian buffet process and employs a novel Metropolis-Hastings transition step to encourage exploring the sample space associated with different values of K. We evaluate the performance of the proposed method through a simulation study under different model specifications and apply the method to a real data set related to a fluid intelligence matrix reasoning test.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11336-022-09900-7DOI Listing

Publication Analysis

Top Keywords

number attributes
12
restricted latent
12
latent class
12
[formula text]
12
class models
8
text] matrix
8
general restricted
8
bayesian inference
4
inference unknown
4
unknown number
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!