Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_sessionsiu0d6usrjs7pv17povo23v4gl9mtifb): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Few, if any estimates of cost-effectiveness for locomotor training strategies following spinal cord injury (SCI) are available. The purpose of this study was to estimate the cost-effectiveness of locomotor training strategies following spinal cord injury (overground robotic locomotor training versus conventional locomotor training) by injury status (complete versus incomplete) using a practice-based cohort.
Methods: A probabilistic cost-effectiveness analysis was conducted using a prospective, practice-based cohort from four participating Spinal Cord Injury Model System sites. Conventional locomotor training strategies (conventional training) were compared to overground robotic locomotor training (overground robotic training). Conventional locomotor training included treadmill-based training with body weight support, overground training, and stationary robotic systems. The outcome measures included the calculation of quality adjusted life years (QALYs) using the EQ-5D and therapy costs. We estimate cost-effectiveness using the incremental cost utility ratio and present results on the cost-effectiveness plane and on cost-effectiveness acceptability curves.
Results: Participants in the prospective, practice-based cohort with complete EQ-5D data (n = 99) qualified for the analysis. Both conventional training and overground robotic training experienced an improvement in QALYs. Only people with incomplete SCI improved with conventional locomotor training, 0.045 (SD 0.28), and only people with complete SCI improved with overground robotic training, 0.097 (SD 0.20). Costs were lower for conventional training, $1758 (SD $1697) versus overground robotic training $3952 (SD $3989), and lower for those with incomplete versus complete injury. Conventional overground training was more effective and cost less than robotic therapy for people with incomplete SCI. Overground robotic training was more effective and cost more than conventional training for people with complete SCI. The incremental cost utility ratio for overground robotic training for people with complete spinal cord injury was $12,353/QALY.
Conclusions: The most cost-effective locomotor training strategy for people with SCI differed based on injury completeness. Conventional training was more cost-effective than overground robotic training for people with incomplete SCI. Overground robotic training was more cost-effective than conventional training for people with complete SCI. The effect estimates may be subject to limitations associated with small sample sizes and practice-based evidence methodology. These estimates provide a baseline for future research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9867867 | PMC |
http://dx.doi.org/10.1186/s12984-023-01134-7 | DOI Listing |
J Neurol
December 2024
Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
Aim: This work aimed to update and summarize the existing evidence on the effectiveness of robot-assisted training (RAT) in adults with Parkinson's disease (PD).
Methods: We conducted a systematic review with meta-analysis, reported following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (PROSPERO CRD42022371124). Seven databases and two trial registries were searched for randomized-controlled trials (RCTs) addressing RAT alone or in addition to other treatments in adults with PD up to January 2024.
J Neuroeng Rehabil
December 2024
The Fifth Affiliated Hospital of Zhengzhou University, Henan, 450052, P.R. China.
Background: Impaired balance and gait in stroke survivors are associated with decreased functional independence. This study aimed to evaluate the effectiveness of unilateral lower-limb exoskeleton robot-assisted overground gait training compared with conventional treatment and to explore the relationship between neuroplastic changes and motor function recovery in subacute stroke patients.
Methods: In this randomized, single-blind clinical trial, 40 patients with subacute stroke were recruited and randomly assigned to either a robot-assisted training (RT) group or a conventional training (CT) group.
Gait Posture
February 2025
Department of Orthopaedics and Traumatology, Odense University Hospital, J. B. Winsløws Vej 4, Odense 5000, Denmark; Orthopaedic Research Unit, Department of Clinical Research, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark. Electronic address:
PLoS One
November 2024
Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Bangkok, Thailand.
Individuals with lower limb impairment after a stroke or spinal cord injury require rehabilitation, but traditional methods can be challenging for both patients and therapists. Robotic systems have been developed to help; however, they currently cannot detect the continuous gait phase in real time, hindering their effectiveness. To address this limitation, researchers have attempted to develop gait phase detection in general using fuzzy logic algorithms and neural networks.
View Article and Find Full Text PDFBackground: Robotic exoskeletons have changed rehabilitation care available to people after spinal cord injury (SCI). Yet, the current evidence base is insufficient to identify the optimal dose and neurophysiological mechanism of robotic exoskeleton gait training (RGT) as an effective rehabilitation approach. This study will (1) examine whether the frequency of RGT after motor incomplete SCI impacts function and health outcomes, (2) analyze the neuroplastic effects of RGT dose, and (3) evaluate the safety, tolerability, and feasibility of delivering RGT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!