This study devised a dual-species biofilm model to investigate bacteria, lipoteichoic acid (LTA), and lipopolysaccharide (LPS) simultaneously, and compared the efficacy of conventional and contemporary disinfection protocols. Seventy single-rooted mandibular premolars were included. Fourteen teeth were negative control, and 56 teeth were infected with 3-week-old E. faecalis and E. coli GFP biofilm. Fourteen/56 teeth were positive control, with seven teeth processed for CLSM analysis and seven teeth sampled with paper points (PPs) and cryogenically ground for bacterial, LTA, and LPS analyses. Forty-two teeth were randomly divided into three groups: GWS (GentleWave system) + MIT (minimally invasive technique), PUI (passive ultrasonic irrigation) + CIT (conventional instrumentation technique), and XP-EF (XP-endo Finisher) + CIT (All, n = 14). Samples were collected before (s1) and after disinfection (s2) with PPs and after cryogenically ground (s3). CFUs were counted, and LTA and LPS were quantified with LTA-ELISA and LAL assay, respectively. XP-EF was as effective as PUI (p > 0.05). GWS + MIT was the most effective disinfection protocol against bacteria, LTA, and LPS (p < 0.05). In conclusion, PUI, XP-EF, and GWS were highly effective against bacteria, LTA, and LPS, with GWS being the most effective.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9867776 | PMC |
http://dx.doi.org/10.1038/s41598-022-26855-y | DOI Listing |
Vet Med Sci
January 2025
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
Background: Clostridium butyricum is a probiotic widely used in animal husbandry, and there is evidence to suggest that it can alleviate intestinal inflammation in pigs and may be related to its lipoteichoic acid (LTA), but the mechanism is still unclear.
Objective: This study aimed to determine the regulatory effect and potential mechanism of C. butyricum LTA on LPS-stimulated inflammation in intestinal porcine epithelial line-J2 (IPEC-J2).
bioRxiv
December 2024
Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago 60612, IL, USA.
Dental caries is one of the most common health issues worldwide arising from the complex interactions of bacteria. In response to harmful stimuli, desirable outcome for the tooth is the formation of tertiary dentin, a protective reparative process that generates new hard tissue. This reparative dentinogenesis is associated with significant inflammation, which triggers the recruitment and differentiation of dental pulp stem cells (DPSCs).
View Article and Find Full Text PDFAnemia of Inflammation is a prevalent co-morbidity in patients with chronic inflammatory disorders. Inflammation causes hypoferremia and iron-restricted erythropoiesis by limiting Ferroportin (FPN)-mediated iron export from macrophages that recycle senescent erythrocytes. Macrophage cell surface expression of FPN is reduced by hepcidin-induced degradation and/or by repression of FPN (Slc40a1) transcription via cytokine and Toll-like receptor (TLR) stimulation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Department of Physical Chemistry 1, Lund University, Lund SE-22100, Sweden.
In this study, we report the degradation of smooth and rough lipopolysaccharides (LPS) from Gram-negative bacteria and of lipoteichoic acid (LTA) from Gram-positive bacteria by peptide-coated TiO nanoparticles (TiO NPs). While bare TiO NPs displayed minor binding to both LPS and LTA, coating TiO NPs with the antimicrobial peptide LL-37 dramatically increased the level of binding to both LPS and LTA, decorating these uniformly. Importantly, peptide coating did not suppress reactive oxygen species generation of TiO NPs; hence, UV illumination triggered pronounced degradation of LPS and LTA by peptide-coated TiO NPs.
View Article and Find Full Text PDFBackground: Injectable products, particularly human vaccines, must be free from fever-inducing agents and thoroughly tested for pyrogens as part of a quality control. Consequently, manufacturing facilities are required to conduct appropriate pyrogen tests per pharmacopeial standards. This study aimed to evaluate the reliability of the MAT in quantifying pyrogenic content in the recombinant hepatitis B vaccine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!