Carbon nanothreads are the most exciting carbon based nanomaterials recently discovered. Obtained by compressing aromatics around 20 GPa, they are characterized by potentially exceptional mechanical properties. The reaction mechanisms have been partly elucidated through computational studies and x-ray diffraction experiments. However, in all these studies, the electronic modifications to which the molecule is subjected with increasing pressure are neglected as also if, and to which extent, the electronic excited states are involved in the high-pressure reactivity. In fact, the pressure increase induces remarkable changes in the electronic properties of molecular crystals, which are often directly related to the reaction's onset and path. We report the pressure evolution of the two-photon induced emission spectrum of crystalline stilbene, the archetype of a class of molecules from which double-core nanothreads are obtained, with the twofold purpose of gaining insight into the reaction mechanism and monitoring if the structural changes observed in x-ray diffraction studies have a detectable counterpart in the electronic properties of the system. The freezing of the spectral diffusion observed on rising pressure is ascribed to a hampered conformational rearrangement because of the larger stiffness of the local environment. The transition to the high pressure phase where the nanothreads form is revealed by the slope change of the pressure shift of all spectral components, while the progressive intensification with pressure of the 0-0 transition suggests a strengthening of the ethylenic bond favoring the charge delocalization on the benzene moieties, which is likely the trigger of the chemical instability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0133610 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.
The tunability of the energy bandgap in the near-infrared (NIR) range uniquely positions colloidal lead sulfide (PbS) quantum dots (QDs) as a versatile material to enhance the performance of existing perovskite and silicon solar cells in tandem architectures. The desired narrow bandgap (NBG) PbS QDs exhibit polar (111) and nonpolar (100) terminal facets, making effective surface passivation through ligand engineering highly challenging. Despite recent breakthroughs in surface ligand engineering, NBG PbS QDs suffer from uncontrolled agglomeration in solid films, leading to increased energy disorder and trap formation.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Nano Engineering, Department of Nano Science and Technology, Sungkyunkwan University Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Seobu-ro 2066, Jangan-gu, Suwon, 16419, Republic of Korea.
Carbon nanotubes (CNTs) produced by the floating-catalyst chemical vapor deposition (FCCVD) method are among the most promising nanomaterials of today, attracting interest from both academic and industrial sectors. These CNTs exhibit exceptional electrical conductivity, optical properties, and mechanical resilience due to their binder-free and low-defect structure, while the FCCVD method enables their continuous and scalable synthesis. Among the methodological FCCVD variations, aerosol CVD' is distinguished by its production of freestanding thin films comprising macroscale CNT networks, which exhibit superior performance and practical applicability.
View Article and Find Full Text PDFSmall
January 2025
School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, P. R. China.
Multiple resonance (MR)-type thermally activated delayed fluorescence (TADF) emitters have garnered significant interest due to their narrow full width at half maximum (FWHM) and high electroluminescence efficiency. However, the planar structures and large singlet-triplet energy gaps (ΔEs) characteristic of MR-TADF molecules pose challenges to achieving high-performance devices. Herein, two isomeric compounds, p-TPS-BN and m-TPS-BN, are synthesized differing in the connection modes between a bulky tetraphenylsilane (TPS) group and an MR core.
View Article and Find Full Text PDFSmall Methods
January 2025
Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland.
In situ monitoring is essential for catalytic process design, offering real-time insights into active structures and reactive intermediates. Electron paramagnetic resonance (EPR) spectroscopy excels at probing geometric and electronic properties of paramagnetic species during reactions. Yet, state-of-the-art liquid-phase EPR methods, like flat cells, require custom resonators, consume large amounts of reagents, and are unsuited for tracking initial kinetics or use with solid catalysts.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2025
Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck,Innrain 80-82, 6020 Innsbruck, Austria.
Cu-doped LaCu Mn O perovskites have been used as a model system for a joint experimental and theoretical assessment of the influence of the Cu doping level on the structural, electronic, and magnetic properties. The different Cu-doped phases LaCuMnO (LCM37), LaCuMnO (LCM55), and LaCuMnO (LCM73) including the respective Cu- and Mn-free benchmark materials LaCuO (LC) and LaMnO (LM) have been studied by magnetization measurements and electronic paramagnetic resonance. Ferromagnetic behavior was detected for pure LM and all Cu-doped perovskites, whereas antiferromagnetic behavior was revealed for LaCuO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!