Internal conversion rates from the extended thawed Gaussian approximation: Theory and validation.

J Chem Phys

Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Emil-Fischer Str. 42, 97074 Würzburg, Germany.

Published: January 2023

AI Article Synopsis

  • The study highlights the importance of accurately predicting nonradiative processes in molecules for understanding their emission properties, acknowledging the limitations of global harmonic models in doing so.
  • A new method, called Extended Thawed Gaussian Approximation (ETGA), is introduced to improve the calculation of internal conversion rates, particularly in complex potentials that global harmonic models struggle with.
  • The ETGA method is shown to effectively predict internal conversion rates in anharmonic systems, outperforming traditional models and providing more reliable results when compared to exact quantum dynamics.

Article Abstract

The theoretical prediction of the rates of nonradiative processes in molecules is fundamental in assessing their emissive properties. In this context, global harmonic models have been widely used to simulate vibronic spectra as well as internal conversion rates and to predict photoluminescence quantum yields. However, these simplified models suffer from the limitations that are inherent to the harmonic approximation and can have a severe effect on the calculated internal conversion rates. Therefore, the development of more accurate semiclassical methods is highly desirable. Here, we introduce a procedure for the calculation of nonradiative rates in the framework of the time-dependent semi-classical Extended Thawed Gaussian Approximation (ETGA). We systematically investigate the performance of the ETGA method by comparing it to the adiabatic and vertical harmonic methods, which belong to the class of widely used global harmonic models. Its performance is tested in potentials that cannot be treated adequately by global harmonic models, beginning with Morse potentials of varying anharmonicity followed by a double well potential. The calculated radiative and nonradiative internal conversion rates are compared to reference values based on exact quantum dynamics. We find that the ETGA has the capability to predict internal conversion rates in anharmonic systems with an appreciable energy gap, whereas the global harmonic models prove to be insufficient.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0130340DOI Listing

Publication Analysis

Top Keywords

internal conversion
20
conversion rates
20
global harmonic
16
harmonic models
16
extended thawed
8
thawed gaussian
8
gaussian approximation
8
rates
7
harmonic
6
internal
5

Similar Publications

CaLuScAlSiO:Ce Green Phosphors for High-Quality White LEDs.

Inorg Chem

January 2025

College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, P.R. China.

Phosphors with broadband green emission are highly desirable for the construction of high-color-rendering warm-white light-emitting diode (LED) devices toward healthy solid-state lighting applications. However, most of the reported green phosphors are subject to an undesirable emission bandwidth and low quantum efficiency. Here, a highly efficient broadband green-emitting garnet phosphor, CaLuScAlSiO:Ce (CLSASO:Ce), is successfully synthesized and investigated in detail.

View Article and Find Full Text PDF

Cooling of Semiconductor Devices via Quantum Tunneling.

Phys Rev Lett

December 2024

Massachusetts Institute of Technology, Research Laboratory of Electronics, Cambridge, Massachusetts 02139, USA.

Classical transport of electrons and holes in nanoscale devices leads to heating that severely limits performance, reliability, and efficiency. In contrast, recent theory suggests that interband quantum tunneling and subsequent thermalization of carriers with the lattice results in local cooling of devices. However, internal cooling in nanoscale devices is largely unexplored.

View Article and Find Full Text PDF

This paper presents the design and experimental verification of a terahertz (THz) spoof surface plasmon polariton (SSPP) waveguide using a coplanar stripline (CPS) with internal corrugations and is compared against an external corrugation configuration. Internal corrugations are selected to reduce the insertion loss by improving the mode conversion efficiency of the transition circuit. We examine this effect using simulation and then experimentally confirm that the SSPP mode was excited for two different corrugation depths, 55 µm, and 65 µm.

View Article and Find Full Text PDF

Background: Due to its previously illicit nature, Cannabis sativa had not fully reaped the benefits of recent innovations in genomics and plant sciences. However, Canada's legalization of C. sativa and products derived from its flower in 2018 triggered significant new demand for robust genotyping tools to assist breeders in meeting consumer demands.

View Article and Find Full Text PDF

Constructing n/n Type Perovskite Homojunctions to Achieve High-Efficiency and Stable Printable Mesoscopic Perovskite Solar Cells.

Small

January 2025

Engineering Research Center of Electronic Information Materials and Devices (Ministry of Education), Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, China.

In recent years, carbon-based printable mesoscopic perovskite solar cells (p-MPSCs) without hole transport layers have garnered considerable interest because of their outstanding benefits in terms of stability and cost. However, the use of carbon electrodes instead of hole transport materials and noble metal electrodes leads to energy level mismatch, which limits the power conversion efficiency (PCE) of p-MPSCs. In this work, a molecular doping strategy is proposed employing cyclopentylmethanamine to passivate surface and subsurface crystal defects in perovskite layers while inducing an energy shift toward the p-type in the perovskite region within carbon electrodes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!