The theoretical prediction of the rates of nonradiative processes in molecules is fundamental in assessing their emissive properties. In this context, global harmonic models have been widely used to simulate vibronic spectra as well as internal conversion rates and to predict photoluminescence quantum yields. However, these simplified models suffer from the limitations that are inherent to the harmonic approximation and can have a severe effect on the calculated internal conversion rates. Therefore, the development of more accurate semiclassical methods is highly desirable. Here, we introduce a procedure for the calculation of nonradiative rates in the framework of the time-dependent semi-classical Extended Thawed Gaussian Approximation (ETGA). We systematically investigate the performance of the ETGA method by comparing it to the adiabatic and vertical harmonic methods, which belong to the class of widely used global harmonic models. Its performance is tested in potentials that cannot be treated adequately by global harmonic models, beginning with Morse potentials of varying anharmonicity followed by a double well potential. The calculated radiative and nonradiative internal conversion rates are compared to reference values based on exact quantum dynamics. We find that the ETGA has the capability to predict internal conversion rates in anharmonic systems with an appreciable energy gap, whereas the global harmonic models prove to be insufficient.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0130340 | DOI Listing |
Inorg Chem
January 2025
College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, P.R. China.
Phosphors with broadband green emission are highly desirable for the construction of high-color-rendering warm-white light-emitting diode (LED) devices toward healthy solid-state lighting applications. However, most of the reported green phosphors are subject to an undesirable emission bandwidth and low quantum efficiency. Here, a highly efficient broadband green-emitting garnet phosphor, CaLuScAlSiO:Ce (CLSASO:Ce), is successfully synthesized and investigated in detail.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Massachusetts Institute of Technology, Research Laboratory of Electronics, Cambridge, Massachusetts 02139, USA.
Classical transport of electrons and holes in nanoscale devices leads to heating that severely limits performance, reliability, and efficiency. In contrast, recent theory suggests that interband quantum tunneling and subsequent thermalization of carriers with the lattice results in local cooling of devices. However, internal cooling in nanoscale devices is largely unexplored.
View Article and Find Full Text PDFThis paper presents the design and experimental verification of a terahertz (THz) spoof surface plasmon polariton (SSPP) waveguide using a coplanar stripline (CPS) with internal corrugations and is compared against an external corrugation configuration. Internal corrugations are selected to reduce the insertion loss by improving the mode conversion efficiency of the transition circuit. We examine this effect using simulation and then experimentally confirm that the SSPP mode was excited for two different corrugation depths, 55 µm, and 65 µm.
View Article and Find Full Text PDFBMC Genomics
January 2025
Cannabis Innovation and Research Center, Université de Moncton, Moncton, New-Brunswick, Canada.
Background: Due to its previously illicit nature, Cannabis sativa had not fully reaped the benefits of recent innovations in genomics and plant sciences. However, Canada's legalization of C. sativa and products derived from its flower in 2018 triggered significant new demand for robust genotyping tools to assist breeders in meeting consumer demands.
View Article and Find Full Text PDFSmall
January 2025
Engineering Research Center of Electronic Information Materials and Devices (Ministry of Education), Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, China.
In recent years, carbon-based printable mesoscopic perovskite solar cells (p-MPSCs) without hole transport layers have garnered considerable interest because of their outstanding benefits in terms of stability and cost. However, the use of carbon electrodes instead of hole transport materials and noble metal electrodes leads to energy level mismatch, which limits the power conversion efficiency (PCE) of p-MPSCs. In this work, a molecular doping strategy is proposed employing cyclopentylmethanamine to passivate surface and subsurface crystal defects in perovskite layers while inducing an energy shift toward the p-type in the perovskite region within carbon electrodes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!