Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The interfacial solar desalination has been considered a promising method to address the worldwide water crisis without sophisticated infrastructures and additional energy consumption. Although various advanced solar evaporators have been developed, their practical applications are still restricted by the unsustainable materials and the difficulty of precise customization for structure to escort high solar-thermal efficiency. To address these issues, we employed two kinds of naturally occurring molecules, tannic acid and iron (III), to construct a low-cost, highly efficient and durable interfacial solar evaporator by three-dimensional (3D) printing. Based on a rational structural design, a robust and 3D-printed evaporator with conical array surface structure was developed, which could promote the light harvesting capacity significantly via the multiple reflections and anti-reflection effects on the surface. By optimizing the height of the conical arrays, the 3D-printed evaporator with tall-cone structure could achieve a high evaporation rate of 1.96 kg m h under one sun illumination, with a photothermal conversion efficiency of 94.4%. Moreover, this evaporator was also proved to possess excellent desalination performance, recycle stability, anti-salt property, underwater oil resistance, as well as adsorption capacity of organic dye contaminants for multipurpose water purification applications. It was believed that this study could provide a new strategy to fabricate low-cost, structural regulated solar evaporators for alleviating the dilemma of global water scarcity using abundant naturally occurring building blocks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scib.2023.01.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!