Anaerobic-anoxic-oxic biological treatment of high-strength, highly recalcitrant polyphenylene sulfide wastewater.

Bioresour Technol

Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; Department of Chemical Engineering & Material Science, Yuan Ze University, Taoyuan 320, Taiwan. Electronic address:

Published: March 2023

This paper outlines an integrated anaerobic-anoxic-oxic (A2O) treatment scheme for high-strength, highly recalcitrant wastewater from the production of polyphenylene sulfide (PPS) resins and their composite chemicals. An integrated anaerobic granular sludge blanket (GSB) and anoxic-oxic (AO) reactor indicated that the A2O removed chemical oxygen demand (COD) of up to 7,043 mg/L with no adverse impact from high total dissolved solids (25,000 mg/L) on the GSB COD removal and effluent suspended solids. At a Total Kjeldahl Nitrogen (TKN) nitrification load of 0.11 g TKN/L.d and 400 mg NH/L, almost 99 % of the NH was degraded with effluent NH < 5 mg/L, meeting the limit of 35 mg/L. High S levels of up to 1470 mg/L can be transformed through aerobic microbial degradation to meet a limit of 1.0 mg/L. With proper microbial acclimation and process designs, the integrated A2O scheme offers a resilient and robust treatment for high-strength recalcitrant PPS wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2023.128640DOI Listing

Publication Analysis

Top Keywords

high-strength highly
8
highly recalcitrant
8
polyphenylene sulfide
8
anaerobic-anoxic-oxic biological
4
biological treatment
4
treatment high-strength
4
recalcitrant polyphenylene
4
sulfide wastewater
4
wastewater paper
4
paper outlines
4

Similar Publications

The Buckling Behavior and Reliability Evaluation of a Cable-Stayed Bridge with Unique-Shaped Towers.

Materials (Basel)

December 2024

School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China.

Buckling is a significant concern for cable-stayed bridges that incorporate a large number of steel components, particularly those featuring unique-shaped towers that require further examination due to the intricate internal force and stress distribution. This paper investigates the buckling behavior of a cable-stayed bridge with inverted V-shaped towers. The cable tower is characterized by its unique design that consists of diagonal bracings and columns in a compression-bending state.

View Article and Find Full Text PDF

Elastic, strong and tough ionically conductive elastomers.

Nat Commun

January 2025

Laboratoire Sciences et Ingénierie de la Matiére Molle, ESPCI Paris, CNRS, PSL University, Paris, France.

Stretchable elastic materials with high strength, toughness, and good ionic conductivity are highly desirable for wearable devices and stretchable batteries. Unfortunately, limited success has been reported to attain all of these properties simultaneously. Here, we report a family of ionically conductive elastomers (ICEs) without compromise between mechanical properties (high stiffness, reversible elasticity, fracture resistance) and ionic conductivity, by introducing a multiple network elastomer (MNE) architecture into a low polymer.

View Article and Find Full Text PDF

Despite the development of various motor learning models over many decades, the question of which model is most effective under which conditions to optimize the acquisition of skills remains a heated and recurring debate. This is particularly important in connection with learning sports movements with a high strength component. This study aims to examine the acute effects of various motor learning models on technical efficiency and force production during the Olympic snatch movement.

View Article and Find Full Text PDF

High-Strength Anisotropic Fluorescent Hydrogel Based on Solvent Exchange for Patterning.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.

Aggregation-induced emission (AIE)-active fluorescent hydrogel materials have found extensive applications in soft robotics, wearable electronics, information encryption, and biomedicine. Nevertheless, it continues to be difficult to create hydrogels that are both highly luminescent and possess strong mechanical capabilities. This study introduces a combined approach of prestretching and solvent exchange to create anisotropic luminous hydrogels made of poly(methacrylic acid-methacrylamide).

View Article and Find Full Text PDF

The repurposing of statins as neuroprotective agents and/or anti-brain tumor drugs is limited by challenges in brain bioavailability and systemic off-target effects. Therefore, improved and targeted delivery of statins to the brain is necessary. This study aimed to develop a high-strength liquid formulation of the poorly soluble prodrug simvastatin for intranasal administration, as a strategy to achieve high brain concentrations of the prodrug and/or its active form, tenivastatin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!