A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The production of pH indicator Ca and Cu alginate ((1,4)- β -d-mannuronic acid and α -l-guluronic acid) cryogels containing anthocyanin obtained via red cabbage extraction for monitoring chicken fillet freshness. | LitMetric

In recent days, intelligent food packaging has gained attention due to consumers' needs and monitoring of the freshness of food. Biopolymers are used to produce matrix parts and dye chemicals, because of their unique properties, such as biodegradability and biocompatibility. In this study, alginate molecules and anthocyanins were used to produce to monitor chicken fillet freshness via pH response characteristics. Anthocyanins' color and UV characteristics at different pHs were investigated. The obtained anthocyanin solution showed visible color response at different pH level. In the red cabbage extract, the anthocyanin concentration was as 0.65 ± 0.03 mg/g. Alginate and extracted anthocyanins from red cabbage were mixed at the solution phase, then metal alginate hydrogels were synthesized via crosslinking Ca and Cu with alginate molecules. Due to the porous structure of the cryogels, hydrogels were freeze dried at -80 °C for 24 h at vacuum atmosphere. The obtained cryogel indicated significant color changes from pH 4 to pH 10, and at a basic environment, the color change was observed with the naked eye. The porosity amounts and sizes of the produced cryogels were examined, the average pore amount of cryogels was found to be 85.46 ± 4.36 %, and the average pore size 97.98 ± 26.20 μm. Furthermore, it was seen that the color change was not directly related to the porosity, but the interaction of anthocyanin and metal alginate matrix effected color changes degree of cryogels. Due to the electronegativity of Cu ions, and the use of a low amount of anthocyanin was found to be more suitable for color change. The color was changed to blue-purple while total volatile basic nitrogen content increased to 46.67 mg/100 g from 14.00 mg/100 g. As a result, prepared cryogels should be a better candidates for use as a freshness indicator and intelligent packaging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.123304DOI Listing

Publication Analysis

Top Keywords

red cabbage
12
color change
12
chicken fillet
8
fillet freshness
8
alginate molecules
8
color
8
metal alginate
8
color changes
8
average pore
8
alginate
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!