Sequential release of vascular endothelial growth factor-A and bone morphogenetic protein-2 from osteogenic scaffolds assembled by PLGA microcapsules: A preliminary study in vitro.

Int J Biol Macromol

Department of Prosthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China. Electronic address:

Published: March 2023

Bone regeneration is a complex process sequentially regulated by multiple cytokines at different stages. Vascular endothelial growth factor-A (VEGF-A) and bone morphogenetic protein-2 (BMP-2) are the two most important factors involved in this process, and the combination of the two can achieve better bone regeneration by coupling angiogenesis and osteogenesis. In this study, poly(lactic-co-glycolic acid) (PLGA) microspheres with core-shell structure (microcapsules) encapsulating VEGF-A or BMP-2 were prepared by coaxial channel injection and continuous fluid technology. The sequential release of two cytokines by microcapsules with different PLGA molecular weight and shell thickness and its performance in vitro were explored. It was demonstrated that the molecular weight of PLGA significantly affected the degradation and release kinetics of microcapsules, while the thickness of the shell can regulate the release in a finer level. VEGF-A encapsulated microcapsules with low molecular weight can induce vascular endothelial cells to form lumens structures in vitro at an early stage. And BMP-2 encapsulated microcapsules could promote osteogenic differentiation, but the effect could be delayed when the microcapsules were prepared with PLGA of 150 kDa. In conclusion, the core-shell PLGA microcapsules in this study can sequentially release VEGF-A and BMP-2 at different stages to simulate natural bone repair.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.123330DOI Listing

Publication Analysis

Top Keywords

vascular endothelial
12
molecular weight
12
sequential release
8
endothelial growth
8
growth factor-a
8
bone morphogenetic
8
morphogenetic protein-2
8
microcapsules
8
plga microcapsules
8
bone regeneration
8

Similar Publications

Introduction: Despite the efficacy and safety of SARS-CoV-2 vaccines, inflammatory and/or thrombotic episodes have been reported. Since the impact of COVID-19 vaccines on the endothelium remains uncertain, our objective was to assess endothelial activation status before and 90 days after the third dose of the BNT162b2 mRNA COVID-19 vaccine.

Methods: A prospective longitudinal study was conducted at University General Hospital of Albacete, involving 38 healthy health-care workers.

View Article and Find Full Text PDF

Background: The role of cancer-associated pericytes (CAPs) in tumor microenvironment (TME) suggests that they are potential targets for cancer treatment. The mechanism of CAP heterogeneity in esophageal squamous cell carcinoma (ESCC) remains unclear, which has limited the development of treatments for tumors through CAPs. Therefore, a comprehensive understanding of the classification, function, cellular communication and spatial distribution of CAP subpopulations in ESCC is urgently needed.

View Article and Find Full Text PDF

Mechanistic insights into vascular biology via methyltransferase-like 3-driven N-adenosine methylation of RNA.

Front Cell Dev Biol

January 2025

Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.

Recent advancements in the mechanistic comprehension of vascular biology have concentrated on METTL3-mediated N-methyladenosine modification of RNA, which modulates a spectrum of RNA functionalities with precision. Despite extensive investigations into the roles and mechanisms of METTL3 within vascular biology, a holistic review elucidating their interconnections remains absent. This analysis endeavors to meticulously scrutinize the involvement of METTL3 in both the physiological and pathological paradigms of vascular biology.

View Article and Find Full Text PDF

With the rise of anti-vascular endothelial growth factor antibody and programmed cell death-ligand 1 (PD-L1) regimens, particularly bevacizumab and atezolizumab, as first-line treatments for advanced hepatocellular carcinoma (HCC), there is a need to explore PD-L1 and programmed cell death 1 inhibitors in combination therapies for unresectable HCC (uHCC). Integrating systemic therapies with locoregional approaches is also emerging as a potent strategy. This study compares the outcomes of atezolizumab (PD-L1 inhibitor) and sintilimab (programmed cell death 1 inhibitor) with bevacizumab or its biosimilar, combined with hepatic arterial interventional therapies (HAIT) in uHCC patients.

View Article and Find Full Text PDF

Objectives: Well-differentiated neuroendocrine tumors (NET) are highly vascular tumors characterized by their expression of vascular endothelial growth factor (VEGF). This trial investigated the activity of ramucirumab, a monoclonal antibody that targets VEGF receptor-2 (VEGFR-2) and inhibits activity of VEGF, in combination with somatostatin analog therapy in patients (pts) with advanced extra-pancreatic NET.

Methods: We conducted a single-arm phase II trial enrolling pts with advanced, progressive extra-pancreatic NET.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!