Purpose: Helium ions offer intermediate physical and biological properties to the clinically used protons and carbon ions. This work presents the commissioning of the first clinical treatment planning system (TPS) for helium ion therapy with active beam delivery to prepare the first patients' treatment at the Heidelberg Ion-Beam Therapy Center (HIT).
Methods And Materials: Through collaboration between RaySearch Laboratories and HIT, absorbed and relative biological effectiveness (RBE)-weighted calculation methods were integrated for helium ion beam therapy with raster-scanned delivery in the TPS RayStation. At HIT, a modified microdosimetric kinetic biological model was chosen as reference biological model. TPS absorbed dose predictions were compared against measurements with several devices, using phantoms of different complexities, from homogeneous to heterogeneous anthropomorphic phantoms. RBE and RBE-weighted dose predictions of the TPS were verified against calculations with an independent RBE-weighted dose engine. The patient-specific quality assurance of the first treatment at HIT using helium ion beam with raster-scanned delivery is presented considering standard patient-specific measurements in a water phantom and 2 independent dose calculations with a Monte Carlo or an analytical-based engine.
Results: TPS predictions were consistent with dosimetric measurements and independent dose engines computations for absorbed and RBE-weighted doses. The mean difference between dose measurements to the TPS calculation was 0.2% for spread-out Bragg peaks in water. Verification of the first patient treatment TPS predictions against independent engines for both absorbed and RBE-weighted doses presents differences within 2% in the target and with a maximum deviation of 3.5% in the investigated critical regions of interest.
Conclusions: Helium ion beam therapy has been successfully commissioned and introduced into clinical use. Through comprehensive validation of the absorbed and RBE-weighted dose predictions of the RayStation TPS, the first clinical TPS for helium ion therapy using raster-scanned delivery was employed to plan the first helium patient treatment at HIT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijrobp.2023.01.015 | DOI Listing |
Radiat Res
January 2025
Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
Variable relative biological effectiveness (RBE) of carbon radiotherapy may be calculated using several models, including the microdosimetric kinetic model (MKM), stochastic MKM (SMKM), repair-misrepair-fixation (RMF) model, and local effect model I (LEM), which have not been thoroughly compared. In this work, we compared how these four models handle carbon beam fragmentation, providing insight into where model differences arise. Monoenergetic and spread-out Bragg peak carbon beams incident on a water phantom were simulated using Monte Carlo.
View Article and Find Full Text PDFRep Prog Phys
January 2025
Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, Aarhus, Midtjylland, 8000, DENMARK.
Irradiation of condensed matter with ionizing radiation generally causes direct photoionization as well as secondary processes that often dominate the ionization dynamics. Here, large helium (He) nanodroplets with radius ≳ 40 nm doped with lithium (Li) atoms are irradiated with extreme ultraviolet (XUV) photons of energy hν ≥ 44.4 eV and indirect ionization of the Li dopants is observed in addition to direct photoionization of the He droplets.
View Article and Find Full Text PDFThe introduction of intermediate bands by hyperdoping is an efficient way to realize infrared light absorption of silicon. In this Letter, inert element (helium and argon for specific)-doped black silicon is obtained by helium ion-implantation followed by femtosecond pulse laser irradiation in an argon atmosphere based on near-intrinsic silicon substrates. Within the 200 nm of the silicon surface, the concentrations of helium and argon are both above the order of 10 cm.
View Article and Find Full Text PDFMutat Res Rev Mutat Res
January 2025
Radiation Epidemiology Branch, National Cancer Institute, MD 20892-9778, USA; Faculty of Health, Science and Technology, Oxford Brookes University, Headington Campus, OX3 0BP, UK.
Biological effects of ionizing radiation vary not merely with total dose but also with temporal dose distribution. Sparing dose protraction effects, in which dose protraction reduces effects of radiation have widely been accepted and generally assumed in radiation protection, particularly for stochastic effects (e.g.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
We report photodissociation processes and spectral measurements upon photoabsorption of size-selected cationic silver clusters, Ag, stored in an ion trap. The experiment shows that small clusters ( ≲ 15) dissociate upon one-photon absorption, whereas larger ones require multiple photons up to five in the present study. The emergence of multi-photon processes is attributed to collisional cooling in the presence of a buffer helium gas in the trap, which competes with size-dependent dissociation rates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!