A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Application of loofah and insects in a bio-trickling filter to relieve clogging. | LitMetric

Application of loofah and insects in a bio-trickling filter to relieve clogging.

Chemosphere

Centre of Air Pollution Control and Carbon Neutrality, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, 100054, China.

Published: March 2023

Bio-trickling filters (BTFs) use an inert filler to purify pollutants making them prone to clogging due to bacterial accumulation. To investigate the performance of a non-inert filler in BTF and its cooperation with insects to relieve clogging, a vertical BTF was constructed with a loofah/Pall ring/polydimethylsiloxane composite filler and selected bacteria to purify toluene. The BTF was started up within 17 d and restarted within 3 d after starvation for 12-16 d. Its average removal efficiency was >90% at steady state. The maximum elimination capacity of 86.4 g·(m·h) was obtained at a volume capacity of 96.2 g·(m·h). The introduction of holometabolous insects (Clogmia albipunctata) rapidly removed the biofilm and accelerated the degradation of the loofah, which alleviated clogging. Furthermore, confocal laser scanning microscope (CLSM) observations showed that the biofilm polysaccharides were difficult to remove, while lipids were readily lost. Analysis of microbial diversity over time and space revealed that the dominant bacterium, Comamonas, was replaced by diverse microflora with no obvious dominant genus. Insect introduction and loofah migration had little effect on the evolution of microflora. This study provides a promising approach to operating BTFs with less clogging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.137912DOI Listing

Publication Analysis

Top Keywords

relieve clogging
8
clogging
5
application loofah
4
loofah insects
4
insects bio-trickling
4
bio-trickling filter
4
filter relieve
4
clogging bio-trickling
4
bio-trickling filters
4
filters btfs
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!