In this study, biodegradable film was prepared from polyvinyl alcohol (PVA), Silver chloride (AgCl) and spirulina (Sp). Surface morphology, mechanical properties, antioxidant, antimicrobial, optical properties, etc. were investigated. The FTIR results confirmed the effect of AgCl and Sp on PVA structure. Sp increased the moisture content and solubility in water. The XRD results showed the semi-crystalline structure of PVA. AgCl nanoparticles activated the antibacterial property of the film against Escherichia coli and Staphylococcus aureus bacteria and Sp caused a strong increase in the antioxidant property of the film. Examining the light transmittance of films containing AgCl nanoparticles showed that the transmittance of films containing nanoparticles decreased with exposure to sunlight and ultraviolet light with increasing treatment time, which indicates the activation of the photochromic property of films containing AgCl in the presence of light. The results showed the suitable photochromic property of the PVA/AgCl films.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2023.135459DOI Listing

Publication Analysis

Top Keywords

biodegradable film
8
polyvinyl alcohol
8
silver chloride
8
antimicrobial optical
8
optical properties
8
agcl nanoparticles
8
property film
8
transmittance films
8
films agcl
8
photochromic property
8

Similar Publications

Development of heat sealable film from tapioca and potato starch for application in edible packaging.

J Food Sci Technol

February 2025

Department of Food Technology and Nutrition, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150 Thailand.

This study aimed to fabricate edible films from tapioca (T) and potato (P) starch, assessing their physicochemical properties and biodegradation across different ratios (T100P0, T70P30, T50P50, and T30P70). The films underwent evaluation for moisture content, thickness, water vapor permeability, and color values. T100P0 and T30P70 formulations exhibited the highest film transparency at 43.

View Article and Find Full Text PDF

The environmental crisis was brought on by composites made of synthetic materials that are not biodegradable. Eco-friendly replacement materials for non-biodegradable composites is biodegradable composites. The poisonous remnants are avoided because of how the environment breaks them down.

View Article and Find Full Text PDF

Most of the food packaging materials used in the market are petroleum-based plastics; such materials are neither biodegradable nor environmentally friendly and require years to decompose. To overcome these problems, biodegradable and edible materials are encouraged to be used because such materials degrade quickly due to the actions of bacteria, fungi, and other environmental effects. The present study examined that starch can be effectively used as raw material to develop biodegradable, edible films.

View Article and Find Full Text PDF

Polymers have been ruling the packaging industry for decades due to their versatility, easy manufacturability, and low cost. The overuse of non-biodegradable plastics in food packaging has become a serious environmental concern. Multi-walled carbon nanotube (MWCNT) reinforced nanocomposites have exceptional electrical, thermal, and mechanical properties.

View Article and Find Full Text PDF

Background: Doxorubicin (DOX) is a potent chemotherapeutic agent for breast cancer, but its effectiveness is often diminished by resistance mechanisms, particularly through p-glycoprotein (P-gp) mediated drug efflux. Clarithromycin (CAM), a macrolide antibiotic, inhibits multiple metabolic pathways including CYP3A and P-gp, potentially countering DOX resistance.

Objective: This study aimed to evaluate the potentiation of DOX and its effectiveness against the MCF-7 breast cancer cell line by encapsulating both DOX and CAM in PEGylated liposomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!