Membrane chemical reactors (MCRs) have demonstrated a great potential for simultaneous removal of wide-spectrum pollutants in advanced water treatment. However, current catalyst (re)loading and catalytic reactivity limitations obstruct their practical applications. Herein, as a proof-of-concept, we report a hollow fiber membrane chemical reactor (HF-MCR) with high and sustainable catalytic reactivity, enabled by novel magnetic confinement engineering of the catalysts. Namely, the zerovalent iron (ZVI) nanocatalysts were spatially dispersed and confined to nearly parallel magnetic induction lines, forming forest-like microwire arrays in the membrane lumen. Such arrays exhibited ultrahigh hydrodynamic stability. The HF-MCR integrated sequential membrane separation and Fenton-like catalysis, thus being capable of high and synergistic wide-spectrum decontamination. The membrane separation process completely removed large nanoplastics (NPs) via size exclusion, and thus the subsequent Fenton-like catalysis process enhanced removal efficiency of otherwise permeated bisphenol A (BPA) and phosphate (P) by in situ generated reactive oxygen species (primarily O) and iron (oxyhydr)oxides, respectively. Furthermore, highly dispersed ZVI arrays and their continuous surface depassivation driven by magnetic gradient and hydrodynamic forces conferred abundant accessible catalytic sites (i.e., Fe and Fe) to stimulate Fenton-like catalysis. The consequent enhancement of BPA and P removal kinetics was 3-765 and 49-492 folds those in conventional (flow-through or batch) systems, respectively. Periodic ZVI reloading ensured sustained decontamination performance of the HF-MCR. This is the first demonstration of the magnetic confinement engineering that enables efficient and unlimited catalyst (re)loading and sustainable catalytic reactivity in the MCR for water treatment, which is beyond the reach of current approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2023.119603DOI Listing

Publication Analysis

Top Keywords

catalytic reactivity
12
fenton-like catalysis
12
enhanced removal
8
removal wide-spectrum
8
membrane chemical
8
water treatment
8
catalyst reloading
8
sustainable catalytic
8
magnetic confinement
8
confinement engineering
8

Similar Publications

A single-component flavin-dependent halogenase, AetF, has emerged as an attractive biocatalyst for catalyzing halogenation. However, its flavin chemistry remains unexplored and cannot be predicted due to its uniqueness in sequence and structure compared to other flavin-dependent monooxygenases. Here, we investigated the flavin reactions of AetF using transient kinetics.

View Article and Find Full Text PDF

Monoanionic, bidentate-auxiliary-directed, cobalt-catalyzed C-H bond functionalization has become a very useful tool in organic synthesis. A comprehensive investigation into isolated organometallic intermediates and their reactivity within the catalytic cycle is lacking. We report here mechanistic studies of cobalt-catalyzed, aminoquinoline-directed C(sp)-H bond functionalization.

View Article and Find Full Text PDF

Semiconductor nanomaterials and nanostructured interfaces have important technological applications, ranging from fuel production to electrosynthesis. Their photocatalytic activity is known to be highly heterogeneous, both in an ensemble of nanomaterials and within a single entity. Photoelectrochemical imaging techniques are potentially useful for high-resolution mapping of photo(electro)catalytic active sites; however, the nanoscale spatial resolution required for such experiments has not yet been attained.

View Article and Find Full Text PDF

X-ray spectroscopies are uniquely poised to describe the geometric and electronic structure of metalloenzyme active sites under a wide variety of sample conditions. UV/Vis (ultraviolet/visible) spectroscopy is a similarly well-established technique that can identify and quantify catalytic intermediates. The work described here reports the first simultaneous collection of full in situ UV/Vis and high-energy resolution fluorescence detected x-ray absorption spectra.

View Article and Find Full Text PDF

Photoelectrochemical sensors have been studied for glucose detection because of their ability to minimize background noise and unwanted reactions. Titanium dioxide (TiO), a highly efficient material in converting light into electricity, cannot utilize visible light. In this regard, we developed a nonenzymatic glucose sensor by using a simple one-step electrospinning technique to combine cupric oxide with TiO to create a heterojunction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!