A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Functionalized agarose hydrogel with in situ Ag nanoparticles as highly recyclable heterogeneous catalyst for aromatic organic pollutants. | LitMetric

Functionalized agarose hydrogel with in situ Ag nanoparticles as highly recyclable heterogeneous catalyst for aromatic organic pollutants.

Environ Sci Pollut Res Int

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.

Published: March 2023

In the present research work, a highly recyclable catalyst of Ag-based agarose (HRC-Ag/Agar) hydrogel was successfully fabricated through a simple and efficient in situ reduction method without the aid of additional surface active agent. The interaction between the rich hydroxyl functional (-OH) groups in agarose and Ag can effectively control the growth and dispersion of Ag nanoparticles (NPs) in the HRC-Ag/Agar hydrogel and keep Ag NPs free from chemical contamination, which also guarantees the reusability of HRC-Ag/Agar hydrogel as catalysts. HRC-Ag/Agar hydrogel without freeze drying and calcination was investigated for their potential applications as highly active/recyclable catalysts in reducing aromatic organic pollutants (p-nitrophenol (4-NP), methylene blue (MB) and rhodamine B (RhB)) by KBH. The optimal HRC-Ag/Agar-1.9 hydrogel can complete the catalytic reduction of 4-NP within 11 min. Moreover, HRC-Ag/Agar-1.9 hydrogel achieves the high conversion rate (> 99%) through ten catalytic runs. Similarly, HRC-Ag/Agar-1.9 hydrogel was able to achieve a reduction efficiency of RhB at 98% within 17 min and that of MB at 95% within 40 min. The advantages of simple synthetic procedure, no secondary pollution, strong stability and easily separated make the HRC-Ag/Agar hydrogel have great potential prospect for environmental applications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-25420-yDOI Listing

Publication Analysis

Top Keywords

hrc-ag/agar hydrogel
20
hrc-ag/agar-19 hydrogel
12
hydrogel
9
highly recyclable
8
aromatic organic
8
organic pollutants
8
hrc-ag/agar
5
functionalized agarose
4
agarose hydrogel
4
hydrogel situ
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!