One-Handed Helical Tubular Ladder Polymers for Chromatographic Enantioseparation.

Angew Chem Int Ed Engl

Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan.

Published: March 2023

Defect-free one-handed contracted helical tubular ladder polymers with a π-electron-rich cylindrical helical cavity were synthesized by alkyne benzannulations of the random-coil precursor polymers containing 6,6'-linked-1,1'-spirobiindane-7,7'-diol-based chiral monomer units. The resulting tightly-twisted helical tubular ladder polymers showed remarkably high enantioseparation abilities toward a variety of chiral hydrophobic aromatics with point, axial, and planar chiralities. The random-coil precursor polymer and analogous rigid-rod extended helical ribbon-like ladder polymer with no internal helical cavity exhibited no resolution abilities. The molecular dynamics simulations suggested that the π-electron-rich cylindrical helical cavity formed in the tightly-twisted tubular helical ladder structures is of key importance for producing the highly-enantioseparation ability, by which chiral aromatics can be enantioselectively encapsulated by specific π-π and/or hydrophobic interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202218297DOI Listing

Publication Analysis

Top Keywords

helical tubular
12
tubular ladder
12
ladder polymers
12
helical cavity
12
π-electron-rich cylindrical
8
cylindrical helical
8
random-coil precursor
8
helical
7
ladder
5
one-handed helical
4

Similar Publications

Fascin structural plasticity mediates flexible actin bundle construction.

Nat Struct Mol Biol

January 2025

Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA.

Fascin cross-links actin filaments (F-actin) into bundles that support tubular membrane protrusions including filopodia and stereocilia. Fascin dysregulation drives aberrant cell migration during metastasis, and fascin inhibitors are under development as cancer therapeutics. Here, we use cryo-EM, cryo-electron tomography coupled with custom denoising and computational modeling to probe human fascin-1's F-actin cross-linking mechanisms across spatial scales.

View Article and Find Full Text PDF

Cryo-EM structure of the conjugation H-pilus reveals the cyclic nature of the TrhA pilin.

bioRxiv

December 2024

Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire, UK.

Conjugation, the major driver of the spread of antimicrobial resistance genes, relies on a conjugation pilus for DNA transfer. Conjugative pili, such as the F-pilus, are dynamic tubular structures, composed of a polymerized pilin, that mediate the initial donor-recipient interactions, a process known as mating pair formation (MPF). IncH are low-copy-number plasmids, traditionally considered broad host range, which are found in bacteria infecting both humans and animals.

View Article and Find Full Text PDF

Structure of the Pseudomonas aeruginosa PAO1 Type IV pilus.

PLoS Pathog

December 2024

Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom.

Type IV pili (T4Ps) are abundant in many bacterial and archaeal species, where they play important roles in both surface sensing and twitching motility, with implications for adhesion, biofilm formation and pathogenicity. While Type IV pilus (T4P) structures from other organisms have been previously solved, a high-resolution structure of the native, fully assembled T4P of Pseudomonas aeruginosa, a major human pathogen, would be valuable in a drug discovery context. Here, we report a 3.

View Article and Find Full Text PDF

Nanoscale dynamics of Dynamin 1 helices reveals squeeze-twist deformation mode critical for membrane fission.

Proc Natl Acad Sci U S A

December 2024

Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550.

Dynamin 1 (Dyn1) GTPase, a principal driver of membrane fission during synaptic endocytosis, self-assembles into short mechanoactive helices cleaving the necks of endocytic vesicles. While structural information about Dyn1 helix is abundant, little is known about the nanoscale dynamics of the helical scaffolding at the moment of fission, complicating mechanistic understanding of Dyn1 action. To address the role of the helix dynamics in fission, we used High-Speed Atomic Force Microscopy (HS-AFM) and fluorescence microscopy to track and compare the spatiotemporal characteristics of the helices formed by wild-type Dyn1 and its K44A mutant impaired in GTP hydrolysis on minimal lipid membrane templates.

View Article and Find Full Text PDF

Integrated thermal management-sensing-actuation functional artificial muscles.

Mater Horiz

November 2024

Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Tianjin, 300350, China.

Article Synopsis
  • Electrothermal-driven polymer fiber-based artificial muscles are gaining attention for their affordability and high energy output but face limitations due to ineffective cooling methods, particularly for larger sizes.
  • In this study, a new fluidic pump was developed using carbon nanotube electrodes, significantly enhancing cooling efficiency and allowing for quicker actuation and increased power density.
  • The research also included integrating a sensing layer for better control of muscle actuation and showcased potential applications in advanced materials, flexible components, and bionic designs.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!