Objective: Organ transplantation is the last therapeutic choice for end-stage liver failure, which is limited by the lack of sufficient donors. Decellularized liver can be used as a suitable matrix for liver tissue engineering with clinical application potential. Optimizing the decellularization procedure would obtain a biological matrix with completely removed cellular components and preserved 3-dimensional structure. This study aimed to evaluate the decellularization efficacy through three anatomical routes.
Materials And Methods: In this experimental study, rat liver decellularization was performed through biliary duct (BD), portal vein (PV), and hepatic vein (HV); using chemical detergents and enzymes. The decellularization efficacy was evaluated by measurement of DNA content, extracellular matrix (ECM) total proteins, and glycosaminoglycans (GAGs). ECM preservation was examined by histological and immunohistochemical (IHC) staining and scanning electron microscopy (SEM). Scaffold biocompatibility was tested by the MTT assay for HepG2 and HUVEC cell lines.
Results: Decellularization through HV and PV resulted in a transparent scaffold by complete cell removal, while the BD route produced an opaque scaffold with incomplete decellularization. H and E staining confirmed these results. Maximum DNA loss was obtained using 1% and 0.5% sodium dodecyl sulfate (SDS) in the PV and HV groups and the DNA content decreased faster in the HV group. At the final stages, the proteins excreted in the HV and PV groups were significantly less than the BD group. The GAGs level was diminished after decellularization, especially in the PV and HV groups. In the HV and PV groups the collagen amount was significantly more than the BD group. The IHC and SEM images showed that the ECM structure was preserved and cellular components were entirely removed. MTT assay showed the biocompatibility of the decellularized scaffold.
Conclusion: The results revealed that the HV is a more suitable route for liver decellularization than the PV and BD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9868438 | PMC |
http://dx.doi.org/10.22074/cellj.2022.557600.1081 | DOI Listing |
Biomolecules
January 2025
Department of General, Transplant, and Liver Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland.
Liver transplantation is the only curative option for end-stage liver disease and is necessary for an increasing number of patients with advanced primary or secondary liver cancer. Many patient groups can benefit from this treatment, however the shortage of liver grafts remains an unsolved problem. Liver bioengineering offers a promising method for expanding the donor pool through the production of acellular scaffolds that can be seeded with recipient cells.
View Article and Find Full Text PDFJ Funct Biomater
January 2025
Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea.
This research introduced a strategy to fabricate sub-millimeter-diameter artificial liver tissue by extruding a combination of a liver decellularized extracellular matrix (dECM), alginate, endothelial cells, and hepatocytes. Vascularization remains a critical challenge in liver tissue engineering, as replicating the liver's intricate vascular network is essential for sustaining cellular function and viability. Seven scaffold groups were evaluated, incorporating different cell compositions, scaffold materials, and structural configurations.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India.
Correction for ' transplantation of intrahepatic cholangiocyte organoids with decellularized liver-derived hydrogels supports hepatic cellular proliferation and differentiation in chronic liver injury' by Impreet Kaur , , 2025, , 918-928, https://doi.org/10.1039/D4TB01503G.
View Article and Find Full Text PDFLiver tissue engineering offers potential in liver transplantation, while the development of hydrogels for scalable scaffolds incorporating natural components and effective functionalities is ongoing. Here, we propose a novel microfluidic 3D printing hydrogel derived from decellularized fish liver extracellular matrix for liver regeneration. By decellularizing fish liver and combining it with gelatin methacryloyl, the hydrogel scaffold retains essential endogenous growth factors such as collagen and glycosaminoglycans.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Center for 3D Organ Printing and Stem cells (COPS), Pohang University of Science and Technology (POSTECH), Pohang, 37666, Republic of Korea.
Despite significant research progress, tumor heterogeneity remains elusive, and its complexity poses a barrier to anticancer drug discovery and cancer treatment. Response to the same drug varies across patients, and the timing of treatment is an important factor in determining prognosis. Therefore, development of patient-specific preclinical models that can predict a patient's drug response within a short period is imperative.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!