AI Article Synopsis

  • * Researchers isolated 65 mutants of phage K that had better growth characteristics at 37 °C due to loss-of-function mutations in a gene coding for a poorly understood protein, suggesting its critical role in the phage's effectiveness against bacteria.
  • * The study demonstrated that these mutations led to improved bacterial suppression in test models, indicating that understanding and manipulating this gene could enhance phage therapy against resistant strains like USA300 MRSA.

Article Abstract

There is widespread interest in using obligately lytic bacteriophages ("phages") to treat human bacterial infections. Among infections, the USA300 lineage is a frequent cause of invasive disease. We observed that phage K, a model myophage, exhibits temperature-sensitive growth on USA300 strains, with the wild-type phage providing poorer growth suppression in broth and forming smaller and fainter plaques at 37 °C vs. 30 °C. We isolated 65 mutants of phage K that had improved plaquing characteristics at 37 °C when compared to the parental phage. In all 65 mutants, this phenotype was attributable to loss-of-function (LoF) mutations in , which encodes a protein of unknown function that has homologs only among the (SPO1-like myophages infecting gram-positive bacteria). Additional experiments with representative mutants consistently showed that the temperature-sensitive plaque phenotype was specific to USA300 MRSA strains and that Gp102 disruption was correlated with improved suppression of bacterial growth in broth and improved antibacterial activity in a mouse model of upper respiratory tract infection. The same genotype and in vitro phenotypes could be replicated in close relatives of phage K. Gp102 disruption did not have a detectable effect on adsorption but did delay cell culture lysis relative to wild-type under permissive infection conditions, suggesting that conservation might be maintained by selective pressure for more rapid replication. Expression of on a plasmid was toxic to both an MSSA and a USA300 MRSA strain. Molecular modeling predicts a protein with two helix-turn-helix domains that displays some similarity to DNA-binding proteins such as transcription factors. While its function remains unclear, is a conserved gene that is important to the infection process of phages, and it appears that the manner in which USA300 strains defend against them at 37 °C can be overcome by LoF mutations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861931PMC
http://dx.doi.org/10.3390/v15010017DOI Listing

Publication Analysis

Top Keywords

usa300 mrsa
12
antibacterial activity
8
usa300 strains
8
lof mutations
8
gp102 disruption
8
phage
6
usa300
6
phage drives
4
drives temperature-sensitive
4
temperature-sensitive antibacterial
4

Similar Publications

Bicarbonate Within: A Hidden Modulator of Antibiotic Susceptibility.

Antibiotics (Basel)

January 2025

Departments of Medicine and Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.

Since its standardization, clinical antimicrobial susceptibility testing (AST) has relied upon a standard medium, Mueller-Hinton Broth/Agar (MHB/A), to determine antibiotic resistance. However, this microbiologic medium bears little resemblance to the host milieu, calling into question the physiological relevance of resistance phenotypes it reveals. Recent studies investigating antimicrobial susceptibility in mammalian cell culture media, a more host-mimicking environment, demonstrate that exposure to host factors significantly alters susceptibility profiles.

View Article and Find Full Text PDF

Background: Methicillin-resistant (MRSA) is a significant burden globally, particularly in the Arabian Gulf region. The United Arab Emirates (UAE) has experienced rising MRSA prevalence, with increasing diversity in the clonal complexes (CCs) identified. The COVID-19 pandemic, with its increased hospitalization rates and antibiotic use, may have further influenced MRSA's genetic evolution and epidemiology in the country.

View Article and Find Full Text PDF

Background: Nemonoxacin is a new quinolone with an antibacterial efficacy against methicillin-resistant Staphylococcus aureus (MRSA). Certain sequence types (STs) have been emerging in Taiwan, including fluoroquinolone-resistant ST8/USA300. It's an urgent need to determine nemonoxacin susceptibility against ST8/USA300 and other emerging lineages, if any.

View Article and Find Full Text PDF

A 2019 nationwide study in Japan revealed the predominant methicillin-resistant Staphylococcus aureus (MRSA) types in bloodstream infections (BSIs) to be sequence type (ST)8-carrying SCC type IV (ST8-MRSA-IV) and clonal complex 1-carrying SCC type IV (CC1-MRSA-IV). However, detailed patient characteristics and how these MRSA types evolve over time remain largely unknown. In this long-term single-center study, MRSA strains isolated from blood cultures at Nagasaki University Hospital from 2012 to 2019 were sequenced and analyzed.

View Article and Find Full Text PDF

: Community-acquired methicillin-resistant (CA-MRSA) greatly complicates the treatment of skin and soft tissue infections (SSTI). It was previously found that subcutaneous (SQ) treatment with the mononuclear phagocyte (MP)-selective activator complements peptide-derived immunostimulant-02 (CPDI-02; formerly EP67) and increases prophylaxis of outbred CD-1 mice against SQ infection with CA-MRSA. Here, we determined if treatment with CPDI-02 also increases curative protection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!