A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Diagnosis of Multiple Faults in Rotating Machinery Using Ensemble Learning. | LitMetric

Diagnosis of Multiple Faults in Rotating Machinery Using Ensemble Learning.

Sensors (Basel)

Integrated Vehicle Health Management Centre, Cranfield University, Cranfield MK43 0AL, UK.

Published: January 2023

Fault diagnosis of rotating machines is an important task to prevent machinery downtime, and provide verifiable support for condition-based maintenance (CBM) decision-making. Deep learning-enabled fault diagnosis operations have become increasingly popular because features are extracted and selected automatically. However, it is challenging for these models to give superior results with rotating machine components of different scales, single and multiple faults across different rotating components, diverse operating speeds, and diverse load conditions. To address these challenges, this paper proposes a comprehensive learning approach with optimized signal processing transforms for single as well as multiple faults diagnosis across dissimilar rotating machine components: gearbox, bearing, and shaft. The optimized bicoherence, spectral kurtosis and cyclic spectral coherence feature spaces, and deep blending ensemble learning are explored for multiple faults diagnosis of these components. The performance analysis of the proposed approach has been demonstrated through a single joint training of the entire framework on a compound dataset containing multiple faults derived from three public repositories. A comparison with the state-of-the-art approaches that used these datasets, shows that our method gives improved results with different components and faults with nominal retraining.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9863424PMC
http://dx.doi.org/10.3390/s23021005DOI Listing

Publication Analysis

Top Keywords

multiple faults
20
faults rotating
8
ensemble learning
8
fault diagnosis
8
rotating machine
8
machine components
8
faults diagnosis
8
faults
6
diagnosis
5
rotating
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!