Research on Orbital Angular Momentum Recognition Technology Based on a Convolutional Neural Network.

Sensors (Basel)

Key Laboratory of Cognitive Radio and Information Processing, Ministry of Education, Guilin University of Electronic Technology, Guilin 541004, China.

Published: January 2023

In underwater wireless optical communication (UWOC), a vortex beam carrying orbital angular momentum has a spatial spiral phase distribution, which provides spatial freedom for UWOC and, as a new information modulation dimension resource, it can greatly improve channel capacity and spectral efficiency. In a case of the disturbance of a vortex beam by ocean turbulence, where a Laguerre-Gaussian () beam carrying orbital angular momentum (OAM) is damaged by turbulence and distortion, which affects OAM pattern recognition, and the phase feature of the phase map not only has spiral wavefront but also phase singularity feature, the convolutional neural network (CNN) model can effectively extract the information of the distorted OAM phase map to realize the recognition of dual-mode OAM and single-mode OAM. The phase map of the Laguerre-Gaussian beam passing through ocean turbulence was used as a dataset to simulate and analyze the OAM recognition effect during turbulence caused by different temperature ratios and salinity. The results showed that, during strong turbulence Cn2=1.0×10-13K2m-2/3, when different ω = -1.75, the recognition rate of dual-mode OAM (ℓ = ±1~±5, ±1~±6, ±1~±7, ±1~±8, ±1~±9, ±1~±10) had higher recognition rates of 100%, 100%, 100%, 100%, 98.89%, and 98.67% and single-mode OAM (ℓ = 1~5, 1~6, 1~7, 1~8, 1~9, 1~10) had higher recognition rates of 93.33%, 92.77%, 92.33%, 90%, 87.78%, and 84%, respectively. With the increase in ω, the recognition accuracy of the CNN model will gradually decrease, and in a fixed case, the dual-mode OAM has stronger anti-interference ability than single-mode OAM. These results may provide a reference for optical communication technologies that implement high-capacity OAM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9864892PMC
http://dx.doi.org/10.3390/s23020971DOI Listing

Publication Analysis

Top Keywords

orbital angular
12
angular momentum
12
phase map
12
dual-mode oam
12
single-mode oam
12
100% 100%
12
oam
11
recognition
8
convolutional neural
8
neural network
8

Similar Publications

A 1645 nm end-pumped dual-channel Er:YAG vector laser that could generate two cylindrical vector (CV) beams simultaneously with different polarization orders is demonstrated. The laser is designed in a two-arm structure, wherein each arm places a q-plate (QP) to introduce intra-cavity spin-orbital angular momentum conversion, leading to the oscillation of two various CV modes in two arms, and finally output along two directions, respectively. The favorable experimental results illustrate high power stability and polarization mode purity.

View Article and Find Full Text PDF

A scalar, harmonic beam-like field possessing an arbitrary number of orbital angular momentum (OAM) components is shown to trace an ellipse, termed here the orbitalization ellipse, at a given transverse cross section and radius, in the space spanned by the spiral OAM basis. The plane and the structure of the ellipse can be readily found by constructing its conjugate semi-diameter vectors from the OAM components.

View Article and Find Full Text PDF

Quantum backflow (QB), a counterintuitive interference phenomenon where particles with positive momentum can propagate backward, is important in applications involving light-matter interactions. To date, experimental demonstrations of backflow have been restricted to classical optical systems using techniques such as slit scanning or Shack-Hartmann wavefront sensing, which suffer from low spatial resolution due to the inherent limitations in slit width and lenslet array density. Here, we report an observation of azimuthal backflow (AB) both theoretically and experimentally by employing the weak measurement technique, which enables the precise extraction of photon momentum at each pixel.

View Article and Find Full Text PDF

Spin-orbit torques enable energy-efficient manipulation of magnetization by electric current and hold promise for applications ranging from non-volatile memory to neuromorphic computing. Here we report the discovery of a giant spin-orbit torque induced by anomalous Hall current in ferromagnetic conductors. This anomalous Hall torque is self-generated as it acts on the magnetization of the ferromagnet that engenders the torque.

View Article and Find Full Text PDF

Loss of Insight in Syndromes Associated with Frontotemporal Lobar Degeneration: Clinical and Imaging Features.

Am J Geriatr Psychiatry

December 2024

Department of Clinical and Experimental Sciences (DA, BB), University of Brescia, Brescia, Italy; Molecular Markers Laboratory (BB), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy. Electronic address:

Objectives: The present study aims to assess the prevalence, associated clinical symptoms, longitudinal changes, and imaging correlates of Loss of Insight (LOI), which is still unexplored in syndromes associated with Frontotemporal Lobar Degeneration (FTLD).

Design: Retrospective longitudinal cohort study, from Oct 2009 to Feb 2023.

Setting: Tertiary Frontotemporal Dementia research clinic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!