The potential of image proximal sensing for agricultural applications has been a prolific scientific subject in the recent literature. Its main appeal lies in the sensing of precise information about plant status, which is either harder or impossible to extract from lower-resolution downward-looking image sensors such as satellite or drone imagery. Yet, many theoretical and practical problems arise when dealing with proximal sensing, especially on perennial crops such as vineyards. Indeed, vineyards exhibit challenging physical obstacles and many degrees of variability in their layout. In this paper, we present the design of a mobile camera suited to vineyards and harsh experimental conditions, as well as the results and assessments of 8 years' worth of studies using that camera. These projects ranged from in-field yield estimation (berry counting) to disease detection, providing new insights on typical viticulture problems that could also be generalized to orchard crops. Different recommendations are then provided using small case studies, such as the difficulties related to framing plots with different structures or the mounting of the sensor on a moving vehicle. While results stress the obvious importance and strong benefits of a thorough experimental design, they also indicate some inescapable pitfalls, illustrating the need for more robust image analysis algorithms and better databases. We believe sharing that experience with the scientific community can only benefit the future development of these innovative approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9865571PMC
http://dx.doi.org/10.3390/s23020847DOI Listing

Publication Analysis

Top Keywords

proximal sensing
12
designing proximal
4
sensing
4
sensing camera
4
camera acquisition
4
acquisition system
4
system vineyard
4
vineyard applications
4
applications feedback
4
feedback years
4

Similar Publications

Background: This study aims to identify optimal acceleration factors (AFs) for compressed sensing (CS) technology to enhance its clinical application for suspected coronary artery disease (CAD) in whole-heart non-contrast coronary magnetic resonance angiography (CMRA).

Methods: Two hundred and seventeen individuals with suspected CAD underwent whole-heart non-contrast CMRA on a 1.5-T CMR scanner with CS AFs of 2, 4, and 6 (CS2, CS4, and CS6).

View Article and Find Full Text PDF

Advances in digital camera-based phenotyping of Botrytis disease development.

Trends Plant Sci

January 2025

Biointeractions and Plant Health, Wageningen University and Research, 6708PB Wageningen, The Netherlands. Electronic address:

Botrytis cinerea is an important generalist fungal plant pathogen that causes great economic losses. Conventional detection methods to identify B. cinerea infections rely on visual assessments, which are error prone, subjective, labor intensive, hard to quantify, and unsuitable for artificial intelligence (AI) and machine learning (ML) applications.

View Article and Find Full Text PDF

Functional Motor Disorders (FMD) consists in symptoms of altered motor function not attributable to typical neurological and medical conditions. This study aimed to explore explicit and perceptual measures of Sense of Ownership, Agency, and Body Schema in FMD patients, and assess whether these alterations are specific to FMD or shared with other functional disturbances. Twelve FMD patients, ten with Irritable Bowel Syndrome (IBS, a functional gastrointestinal disorder) and fifteen healthy controls (HC) underwent: (i) the Mirror Box Illusion (MBI), requiring participants to perform tapping movements with their dominant hand concealed from sight, while visual feedback was provided by an alien hand under visuo-motor congruency or incongruency conditions; (ii) a Forearm Bisection Task before and after exposure to the MBI, and the Embodiment Questionnaire after the MBI, as perceptual and explicit indices of the embodiment illusion, respectively.

View Article and Find Full Text PDF

A new proliferation of optical instruments that can be attached to towers over or within ecosystems, or 'proximal' remote sensing, enables a comprehensive characterization of terrestrial ecosystem structure, function, and fluxes of energy, water, and carbon. Proximal remote sensing can bridge the gap between individual plants, site-level eddy-covariance fluxes, and airborne and spaceborne remote sensing by providing continuous data at a high-spatiotemporal resolution. Here, we review recent advances in proximal remote sensing for improving our mechanistic understanding of plant and ecosystem processes, model development, and validation of current and upcoming satellite missions.

View Article and Find Full Text PDF

Central projections of nociceptive input originating from the low back and limb muscle in rats.

Sci Rep

January 2025

Department of Physical Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, 950-3198, Japan.

Since clinical features of chronic muscle pain originating from the low back and limbs are different (higher prevalence and broader/duller sensation of low back muscle pain than limb muscle pain), spinal and/or supraspinal projection of nociceptive information could differ between the two muscles. We tested this hypothesis using c-Fos immunohistochemistry combined with retrograde-labeling of dorsal horn (DH) neurons projecting to ventrolateral periaqueductal grey (vlPAG) or ventral posterolateral nucleus of the thalamus (VPL) by fluorogold (FG) injections into the vlPAG or VPL. C-Fos expression in the DH was induced by injecting 5% formalin into the multifidus (MF, low back) or gastrocnemius-soleus (GS, limb) muscle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!