In this study is substantiated the new mathematical model of vector of electroencephalographic signals, registered under the conditions of multiple repetitions of the mental control influences of brain-computer interface operator, in the form of a vector of cyclic rhythmically connected random processes, which, due to taking into account the stochasticity and cyclicity, the variability and commonality of the rhythm of the investigated signals have a number of advantages over the known models. This new model opens the way for the study of multidimensional distribution functions; initial, central, and mixed moment functions of higher order such as for each electroencephalographic signal separately; as well as for their respective compatible probabilistic characteristics, among which the most informative characteristics can be selected. This provides an increase in accuracy in the detection (classification) of mental control influences of the brain-computer interface operators. Based on the developed mathematical model, the statistical processing methods of vector of electroencephalographic signals are substantiated, which consist of statistical evaluation of its probabilistic characteristics and make it possible to conduct an effective joint statistical estimation of the probability characteristics of electroencephalographic signals. This provides the basis for coordinated integration of information from different sensors. The use of moment functions of higher order and their spectral images in the frequency domain, as informative characteristics in brain-computer interface systems, are substantiated. Their significant sensitivity to the mental controlling influence of the brain-computer interface operator is experimentally established. The application of Bessel's inequality to the problems of reducing the dimensions (from 500 to 20 numbers) of the vectors of informative features makes it possible to significantly reduce the computational complexity of the algorithms for the functioning of brain-computer interface systems. Namely, we experimentally established that only the first 20 values of the Fourier transform of the estimation of moment functions of higher-order electroencephalographic signals are sufficient to form the vector of informative features in brain-computer interface systems, because these spectral components make up at least 95% of the total energy of the corresponding statistical estimate of the moment functions of higher-order electroencephalographic signals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9866141PMC
http://dx.doi.org/10.3390/s23020760DOI Listing

Publication Analysis

Top Keywords

brain-computer interface
24
electroencephalographic signals
20
moment functions
16
interface systems
12
processing methods
8
vector cyclic
8
cyclic rhythmically
8
rhythmically connected
8
connected random
8
random processes
8

Similar Publications

A high performance heterogeneous hardware architecture for brain computer interface.

Biomed Eng Lett

January 2025

School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384 People's Republic of China.

Brain-computer interface (BCI) has been widely used in human-computer interaction. The introduction of artificial intelligence has further improved the performance of BCI system. In recent years, the development of BCI has gradually shifted from personal computers to embedded devices, which boasts lower power consumption and smaller size, but at the cost of limited device resources and computing speed, thus can hardly improve the support of complex algorithms.

View Article and Find Full Text PDF

The Hybrid-Brain Computer Interface (BCI) has shown improved performance, especially in classifying multi-class data. Two non-invasive BCI modules are combined to achieve an improved classification which are Electroencephalogram (EEG) and functional Near Infra-red Spectroscopy (fNIRS). Classifying contralateral and ipsilateral motor movements is found challenging among the other mental activity signals.

View Article and Find Full Text PDF

Biopsy location and tumor-associated macrophages in predicting malignant glioma recurrence using an in-silico model.

NPJ Syst Biol Appl

January 2025

Center for Interdisciplinary Digital Sciences (CIDS), Department Information Services and High-Performance Computing (ZIH), Dresden University of Technology, 01062, Dresden, Germany.

Predicting the biological behavior and time to recurrence (TTR) of high-grade diffuse gliomas (HGG) after maximum safe neurosurgical resection and combined radiation and chemotherapy plays a pivotal role in planning clinical follow-up, selecting potentially necessary second-line treatment and improving the quality of life for patients diagnosed with a malignant brain tumor. The current standard-of-care (SoC) for HGG includes follow-up neuroradiological imaging to detect recurrence as early as possible and relies on several clinical, neuropathological, and radiological prognostic factors, which have limited accuracy in predicting TTR. In this study, using an in-silico analysis, we aim to improve predictive power for TTR by considering the role of (i) prognostically relevant information available through diagnostics used in the current SoC, (ii) advanced image-based information not currently part of the standard diagnostic workup, such as tumor-normal tissue interface (edge) features and quantitative data specific to biopsy positions within the tumor, and (iii) information on tumor-associated macrophages.

View Article and Find Full Text PDF

Systematic Review of EEG-Based Imagined Speech Classification Methods.

Sensors (Basel)

December 2024

Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

This systematic review examines EEG-based imagined speech classification, emphasizing directional words essential for development in the brain-computer interface (BCI). This study employed a structured methodology to analyze approaches using public datasets, ensuring systematic evaluation and validation of results. This review highlights the feature extraction techniques that are pivotal to classification performance.

View Article and Find Full Text PDF

One of the most promising applications for electroencephalogram (EEG)-based brain-computer interfaces (BCIs) is motor rehabilitation through motor imagery (MI) tasks. However, current MI training requires physical attendance, while remote MI training can be applied anywhere, facilitating flexible rehabilitation. Providing remote MI training raises challenges to ensuring an accurate recognition of MI tasks by healthcare providers, in addition to managing computation and communication costs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!