In recent years, there has been a growing desire to monitor and control harmful substances arising from industrial processes that impact upon our health and quality of life. This has led to a large market demand for gas sensors, which are commonly based on sensors that rely upon a chemical reaction with the target analyte. In contrast, thermal conductivity detectors are physical sensors that detect gases through a change in their thermal conductivity. Thermal conductivity gas sensors offer several advantages over their chemical (reactive) counterparts that include higher reproducibility, better stability, lower cost, lower power consumption, simpler construction, faster response time, longer lifetime, wide dynamic range, and smaller footprint. It is for these reasons, despite a poor selectivity, that they are gaining renewed interest after recent developments in MEMS-based silicon sensors allowing CMOS integration and smart application within the emerging Internet of Things (IoT). This timely review focuses on the state-of-the-art in thermal conductivity sensors; it contains a general introduction, theory of operation, interface electronics, use in commercial applications, and recent research developments. In addition, both steady-state and transient methods of operation are discussed with their relative advantages and disadvantages presented. Finally, some of recent innovations in thermal conductivity gas sensors are explored.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9860855 | PMC |
http://dx.doi.org/10.3390/s23020681 | DOI Listing |
Materials (Basel)
January 2025
Department of Mechanical Engineering, Samsun University, 55420 Samsun, Turkey.
This study addresses the thermal management challenge in battery systems by enhancing phase change material composites with Ni-P and Ni-P-Cu coatings on phase change material/expanded graphite structures. Traditional phase change materials are limited by low thermal conductivity and mechanical stability, which restricts their effectiveness in high-demand applications. Unlike previous studies, this work integrates Ni-P and Ni-P-Cu coatings to significantly improve both the thermal conductivity and mechanical strength of phase change material/expanded graphite composites, filling a crucial gap in battery thermal management solutions.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Materials Science, Tokai University, Hiratsuka 259-1292, Kanagawa, Japan.
Semiconducting single-walled carbon nanotubes (SWCNTs) are significantly attractive for thermoelectric generators (TEGs), which convert thermal energy into electricity via the Seebeck effect. This is because the characteristics of semiconducting SWCNTs are perfectly suited for TEGs as self-contained power sources for sensors on the Internet of Things (IoT). However, the thermoelectric performances of the SWCNTs should be further improved by using the power sources.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Civil Engineering, Central South University, Changsha 410075, China.
Small-section steel-shell concrete immersed tube tunnels are intended for minibuses and have a low fire heat release rate. Standard fire rise curves do not apply to such tunnels. In this study, a coupled method of computational fluid dynamics (CFD) and the finite element method (FEM) was used to simulate the structural temperature distribution in tunnels.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
Silicon carbide-based titanium silicon carbide (SiC-TiSiC) composites with low free alloy content and varying TiSiC contents are fabricated by two-step reactive melt infiltration (RMI) thorough complete reactions between carbon and TiSi alloy in SiC-C preforms obtained. The densities of SiC-C preform are tailored by the carbon morphology and volumetric shrinkage of slurry during the gel-casting process, and pure composites with variable TiSiC volume contents are successfully fabricated with different carbon contents of the preforms. Due to the increased TiSiC content in the obtained composites, both electrical conductivity and electromagnetic interference (EMI) shielding effectiveness improved progressively, while skin depth exhibited decreased consistently.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Mechanical Engineering, Informatics and Chemistry of Polymer Materials, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
This study proposes a two-scale approach to determining the effective thermal conductivity of fibrous composite materials. The analysis was first carried out at the fiber-interphase level to calculate the effective thermal conductivity of this system, and next at the whole composite structure level. At both scales, the system behavior was analyzed using the finite element method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!