Analysis of the Structure and the Thermal Conductivity of Semi-Crystalline Polyetheretherketone/Boron Nitride Sheet Composites Using All-Atom Molecular Dynamics Simulation.

Polymers (Basel)

Composite Materials Application Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Chudong-ro 92, Bongdong-eup, Wanju-gun 55324, Republic of Korea.

Published: January 2023

AI Article Synopsis

  • Thermal transport simulations focused on how the structure of semi-crystalline polyetheretherketone (PEEK) and the addition of boron nitride (BN) sheets affect thermal conductivity.
  • Molecular-level analysis helped identify the optimal structure of PEEK, emphasizing the importance of amorphous chain length and linkage conformations like loops, tails, and bridges.
  • The addition of BN sheets created longer heat transfer paths, improving the thermal conductivity of PEEK/BN composites, although excessive aggregation of BN sheets disrupted these pathways and limited conductivity improvements.

Article Abstract

Thermal transport simulations were performed to investigate the important factors affecting the thermal conductivity based on the structure of semi-crystalline polyetheretherketone (PEEK), and the addition of boron nitride (BN) sheets. The molecular-level structural analysis facilitated the prediction of the thermal conductivity of the optimal structure of PEEK reflecting the best parameter value of the length of amorphous chains, and the ratio of linkage conformations, such as loops, tails, and bridges. It was found that the long heat transfer paths of polymer chains were induced by the addition of BN sheets, which led to the improvement of the thermal conductivities of the PEEK/BN composites. In addition, the convergence of the thermal conductivities of the PEEK/BN composites in relation to BN sheet size was verified by the disconnection of the heat transfer path due to aggregation of the BN sheets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9862992PMC
http://dx.doi.org/10.3390/polym15020450DOI Listing

Publication Analysis

Top Keywords

thermal conductivity
12
heat transfer
8
thermal conductivities
8
conductivities peek/bn
8
peek/bn composites
8
thermal
6
analysis structure
4
structure thermal
4
conductivity semi-crystalline
4
semi-crystalline polyetheretherketone/boron
4

Similar Publications

Direct Assembly of Grooved Micro/Nanofibrous Aerogel for High-Performance Thermal Insulation via Electrospinning.

ACS Appl Mater Interfaces

January 2025

CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.

Maintaining human body temperature in both high and low-temperature environments is fundamental to human survival, necessitating high-performance thermal insulation materials to prevent heat exchange with the external environment. Currently, most fibrous thermal insulation materials are characterized by large weight, suboptimal thermal insulation, and inferior mechanical and waterproof performance, thereby limiting their effectiveness in providing thermal protection for the human body. In this study, lightweight, waterproof, mechanically robust, and thermal insulating polyamide-imide (PAI) grooved micro/nanofibrous aerogels were efficiently and directly assembled by electrospinning.

View Article and Find Full Text PDF

The bismuth monolayer has recently been experimentally identified as a novel platform for the investigation of two-dimensional single-element ferroelectric system. Here, we model the potential energy surface of a bismuth monolayer by employing a message-passing neural network and achieve an error smaller than 1.2 meV per atom.

View Article and Find Full Text PDF

Carbon-carbon (C/C) composites are attractive materials for high-speed flights and terrestrial atmospheric reentry applications due to their insulating thermal properties, thermal resistance, and high strength-to-weight ratio. It is important to understand the evolving structure-property correlations in these materials during pyrolysis, but the extreme laboratory conditions required to produce C/C composites make it difficult to quantify the properties . This work presents an atomistic modeling methodology to pyrolyze a crosslinked phenolic resin network and track the evolving thermomechanical properties of the skeletal matrix during simulated pyrolysis.

View Article and Find Full Text PDF

Establishing and regulating the ferroelectric polarization in ferroelectric nano-scale catalysts has been recognized as an emerging strategy to advance water splitting reactions, with the merits of improved surface charge density, high charge transfer rate, increased electronic conductivity, the creation of real active sites, and optimizing the chemisorption energy. As a result, engineering and tailoring the ferroelectric polarization induced internal electric field provides significant opportunities to improve the surface and electronic characteristics of catalysts, thereby enhancing the water splitting reaction kinetics. In this review, an interdisciplinary and comprehensive summary of recent advancements in the construction, characterization, engineering and regulation of the polarization in ferroelectric-based catalysts for water splitting is provided, by exploiting a variety of external stimuli.

View Article and Find Full Text PDF

To reduce greenhouse emissions and producing electricity with the smallest environmental impact, developing solar power technology is one of the most important milestones to achieve. Thus, to improve the efficiency of the concentrated solar power (CSP) plants, with lower environmental impact, is of great interest. This work reports the development of nanofluids, a colloidal suspension of nanomaterials in a fluid, based on an environment-friendly base fluid for improving the performance of the heat transfer process in CSP plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!