Nanoparticle-polymer hybrids are becoming increasingly important because seemingly contrasting properties, such as mechanical stability and high elasticity, can be combined into one material. In particular, hybrids made of self-assembled polymers are of growing interest since they exhibit high structural precision and diversity and the subsequent reorganization of the nanoparticles is possible. In this work, we show, for the first time, how hybrids of silica nanoparticles and self-assembled vesicles of polystyrene-block-polyacrylic acid can be prepared using the simple and inexpensive method of co-precipitation, highlighting in particular the challenges of using silica instead of other previously well-researched materials, such as gold. The aim was to investigate the influence of the type of modification and the particle size of the silica nanoparticles on the encapsulation and structure of the polymer vesicles. For this purpose, we first needed to adjust the surface properties of the nanoparticles, which we achieved with a two-step modification procedure using APTES and carboxylic acids of different chain lengths. We found that silica nanoparticles modified only with APTES could be successfully encapsulated, while those modified with APTES and decanoic acid resulted in vesicle agglomeration and poor encapsulation due to their strong hydrophobicity. In contrast, no negative effects were observed when different particle sizes (20 nm and 45 nm) were examined.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9867192PMC
http://dx.doi.org/10.3390/polym15020444DOI Listing

Publication Analysis

Top Keywords

silica nanoparticles
16
nanoparticle-polymer hybrids
8
polystyrene-block-polyacrylic acid
8
modified aptes
8
nanoparticles
6
silica
5
preparation self-assembled
4
self-assembled nanoparticle-polymer
4
hybrids
4
hybrids modified
4

Similar Publications

Exposure of lung epithelia to aerosols is omnipresent. Chronic exposure to polluted air is a significant factor in the development of pulmonary diseases, which are among the top global causes of death, including COVID-19, chronic obstructive pulmonary disease, lung cancer, and tuberculosis. As efforts to prevent and treat lung diseases increase, the development of pulmonary drug delivery systems has become a major area of interest.

View Article and Find Full Text PDF

Gold nanoparticles are widely used in biomedical applications due to their unique properties. However, traditional synthesis methods generate contaminants that cause cytotoxicity and compromise the biocompatibility of the nanomaterials. Therefore, green synthesis methods are essential to produce pure and biocompatible nanoparticles, ensuring their effectiveness in biomedical applications.

View Article and Find Full Text PDF

Ultrasensitive point-of-care multiplex diagnosis for influenza virus based robust quantum dot microsphere-lateral flow immunoassay.

Biosens Bioelectron

January 2025

Key Lab for Special Functional Materials of Ministry of Education, and School of Nanoscience and Materials Engineering, Henan University, 475004, Kaifeng, China. Electronic address:

Influenza A virus (IAV) and influenza B virus (IBV) with similar symptoms of infection caused a serious disease burden and economic losses in annual epidemic season, so it is important to quickly and accurately detect and distinguish between IAV and IBV during influenza season. Herein, the quantum dot microspheres (QDMS) were synthesized and applied to lateral flow immunoassays (LFIA), and a point-of-care (POC) biosensor that can discriminately and simultaneously diagnose IAV and IBV within 10 min was established. A double-sandwich QDMS nanotags was synthesized by immobilizing hydrophobic quantum dots (QDs) with chemical bonding method on a silica sphere template with an outer silica shell protection showed excellent stability and high fluorescence.

View Article and Find Full Text PDF

Mesoporous Silica with Dual Stimuli-Microenvironment Responsiveness via the Pectin-Gated Strategy for Controlled Release of Rosmarinic Acid.

ACS Appl Bio Mater

January 2025

College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, China.

Traditional drug-delivery methods are limited by low bioavailability and nonspecific drug distribution, resulting in poor therapeutic efficacy and potential risks of toxicity. Mesoporous silica nanoparticles (MSNs) have attracted wide attention as drug-delivery carriers due to their large specific surface area, adjustable pore size, good mechanical strength, good biocompatibility, and rich hydroxyl groups on their surface. In this paper, MSNs were synthesized by a template method, and the morphology and pore structure were regulated.

View Article and Find Full Text PDF

In this study, magnesium-doped lithium manganese oxide nanoparticles were prepared through a solid-state reaction technique, and their surface was modified with mesoporous silica. The surface-modified material exhibited a significantly enhanced BET surface area from 5.791 to 66.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!