A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synthesizing Polyurethane Using Isosorbide in Primary Alcohol Form, and Its Biocompatibility Properties. | LitMetric

Synthesizing Polyurethane Using Isosorbide in Primary Alcohol Form, and Its Biocompatibility Properties.

Polymers (Basel)

Department of Chemistry, College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea.

Published: January 2023

Isosorbide is a bio-based renewable resource that has been utilized as a stiffness component in the synthesis of novel polymers. Modified isosorbide-based bis(2-hydroxyethyl)isosorbide (BHIS) has favorable structural features, such as fused bicyclic rings and a primary hydroxyl function with improved reactivity to polymerization when compared to isosorbide itself. Polyurethane series (PBH PU series) using polycarbonate diol (PCD) and bis(2-hydroxyethyl)isosorbide (BHIS) were polymerized through a simple, one-shot polymerization without a catalyst using various ratios of BHIS, PCD, and hexamethylene diisocyanate (HDI). The synthesized BHIS and PUs were characterized using proton nuclear magnetic resonance (H-NMR), Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC), and mechanical testing. To determine the feasibility of using these PUs as biomedical materials, we investigated the effects of their BHIS content on PBH PU series physical and mechanical properties. The PBH PU series has excellent elasticity, with a breaking strain ranging from 686.55 to 984.69% at a 33.26 to 63.87 MPa tensile stress. The material showed superb biocompatibility with its high adhesion and proliferation in the bone marrow cells. Given their outstanding mechanical properties and biocompatibility, the polymerized bio-based PUs can contribute toward various applications in the medical field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9866209PMC
http://dx.doi.org/10.3390/polym15020418DOI Listing

Publication Analysis

Top Keywords

pbh series
12
bis2-hydroxyethylisosorbide bhis
8
mechanical properties
8
bhis
5
synthesizing polyurethane
4
polyurethane isosorbide
4
isosorbide primary
4
primary alcohol
4
alcohol form
4
form biocompatibility
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!