Drug targeting is necessary to deliver drugs to a specific site of action at a rate dictated by therapeutic requirements. The pharmacological action of a drug can thereby be optimised while minimising adverse effects. Numerous colonic drug delivery systems have been developed to avoid such undesirable side effects; however, these systems lack site specificity, leaving room for further improvement. The objective of the present study was to explore the potential of amino-alkoxycarbonyloxymethyl (amino-AOCOM) ether prodrugs as a general approach for future colonic delivery. To circumvent inter- and intra-subject variabilities in enzyme activities, these prodrugs do not rely on enzymes but rather are activated via a pH-triggered intramolecular cyclisation−elimination reaction. As proof of concept, model compounds were synthesised and evaluated under various pH conditions, simulating various regions of the gastrointestinal tract (GIT). Probe 15 demonstrated excellent stability under simulated stomach- and duodenum-like conditions and protected 60% of the payload in a small intestine-like environment. Moreover, 15 displayed sustained release at colonic pH, delivering >90% of the payload over 38 h. Mesalamine (Msl) prodrugs 21 and 22 were also synthesised and showed better stability than probe 15 in the simulated upper GIT but relatively slower release at colonic pH (61−68% of Msl over 48 h). For both prodrugs, the extent of release was comparable to that of the commercial product Asacol. This study provides initial proof of concept regarding the use of a cyclisation-activated prodrug for colon delivery and suggests that release characteristics still vary on a case-by-case basis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9860859 | PMC |
http://dx.doi.org/10.3390/pharmaceutics15010303 | DOI Listing |
Am J Respir Cell Mol Biol
January 2025
Ottawa Hospital Research Institute & CHEO Research Institute, Pediatrics, Ottawa, Ontario, Canada.
Surfactant protein-B (SP-B) deficiency is a lethal neonatal respiratory disease with few therapeutic options. Gene therapy using adeno-associated viruses (AAV) to deliver human cDNA (AAV-hSPB) can improve survival in a mouse model of SP-B deficiency. However, the effect of this gene therapy wanes.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
Current in vitro models of 3D tumor spheroids within the microenvironment have emerged as promising tools for understanding tumor progression and potential drug responses. However, creating spheroids with functional vasculature remains challenging in a controlled and high-throughput manner. Herein, a novel open 3D-microarray platform is presented for a spheroid-endothelium interaction (ODSEI) chip, capable of arraying more than 1000 spheroids on top of the vasculature, compartmentalized for single spheroid-level analysis of drug resistance, and allows for the extraction of specific spheroids for further analysis.
View Article and Find Full Text PDFJ Infect Dis
January 2025
Department of Oral and Craniofacial Biology, School of Dentistry, LSU Health New Orleans, USA.
Background: Vulvovaginal candidiasis (VVC), caused primarily by Candida albicans, is currently treated with either prescription or over-the-counter antifungal drugs, often with variable efficacy and relapses. New and improved therapeutic strategies, including drug-free treatment alternatives, are needed. Upon overgrowth or environmental triggers, C.
View Article and Find Full Text PDFTuberculosis (TB) is historically the world's deadliest infectious disease. New TB drugs that can avoid pre-existing resistance are desperately needed. The β-lactams are the oldest and most widely used class of antibiotics to treat bacterial infections but, for a variety of reasons, they were largely ignored until recently as a potential treatment option for TB.
View Article and Find Full Text PDFGene fusions are common primary drivers of pediatric leukemias and are the result of underlying structural variant (SVs). Current clinical workflows to detect such alterations rely on a multimodal approach, which often increases analysis time and overall cost of testing. In this study, we used long-read sequencing (lrSeq) as a proof-of-concept to determine whether clinically relevant (cr) SVs could be detected within a small (n = 17) pediatric leukemia cohort.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!