Multiple myeloma is a hematological malignancy characterized by the unrestricted proliferation of plasma cells that secrete monoclonal immunoglobulins in the bone marrow. Alpha-momorcharin (α-MMC) is a type I ribosome-inactivating protein extracted from the seeds of the edible plant L., which has a variety of biological activities. This study aimed to investigate the inhibitory effect of α-MMC on the proliferation of multiple myeloma MM.1S cells and the molecular mechanism of MM.1S cell death induced through the activation of cell signal transduction pathways. The cell counting kit-8 (CCK-8) assay was used to determine the inhibitory effect of α-MMC on the proliferation of MM.1S cells and its toxic effect on normal human peripheral blood mononuclear cells (PBMCs). The effect of α-MMC on the MM.1S cells' morphology was observed via inverted microscope imaging. The effects of α-MMC on the MM.1S cell cycle, mitochondrial membrane potential (MMP), and apoptosis were explored using propidium iodide, JC-1, annexin V- fluorescein isothiocyanate/propidium iodide fluorescence staining, and flow cytometry (FCM) analysis. Western blot was used to detect the expressions levels of apoptosis-related proteins and MAPK-signaling-pathway-related proteins in MM.1S cells induced by α-MMC. The results of the CCK-8 showed that in the concentration range of no significant toxicity to PBMCs, α-MMC inhibited the proliferation of MM.1S cells in a time-dependent and concentration-dependent manner, and the IC value was 13.04 and 7.518 μg/mL for 24 and 48 h, respectively. Through inverted microscope imaging, it was observed that α-MMC induced a typical apoptotic morphology in MM.1S cells. The results of the FCM detection and analysis showed that α-MMC could arrest the MM.1S cells cycle at the G2 phase, decrease the MMP, and induce cell apoptosis. Western blot analysis found that α-MMC upregulated the expression levels of Bax, Bid, cleaved caspase-3, and cleaved PARP, and downregulated the expression levels of Mcl-1. At the same time, α-MMC decreased the expression levels of p-c-Raf, p-MEK1/2, p-ERK1/2, p-MSK1, and p-P90RSK, and increased the expression levels of p-p38, p-SPAK/JNK, p-c-Jun, and p-ATF2. The above results suggest that α-MMC can inhibit the proliferation of multiple myeloma MM.1S cells. MAPK cascade signaling is involved in the growth inhibition effect of α-MMC on MM.1S cells via cycle arrest and mitochondrial-pathway-dependent apoptosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9867419 | PMC |
http://dx.doi.org/10.3390/ph16010124 | DOI Listing |
Exp Cell Res
January 2025
Oncogenetics Laboratory, Meir Medical Center, Tchernichovsky St 59, Kfar Saba, Israel; Faculty of Medical and Health Sciences, Tel Aviv University, PO Box 39040, Tel Aviv, Tel Aviv, Israel. Electronic address:
Multiple myeloma (MM) malignant plasma cells accumulate in the bone marrow (BM) where their interactions with the microenvironment promote disease progression and drug resistance. Previously, we have shown that bone marrow mesenchymal stem cells (BM-MSCs) (MM and normal donors- ND) derived extracellular matrix (ECM) affected MM cell lines differentially with a pro-MM effect attributed to MM-MSCs' ECM. Here we studied the composition of BM-MSC's ECM (ND versus MM) with focus on elastin (ELN).
View Article and Find Full Text PDFAnal Chem
July 2024
State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China.
Zhongguo Shi Yan Xue Ye Xue Za Zhi
February 2024
Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China.E-mail:
J Pharmacol Sci
January 2024
Department of Hematology, Toyama University Hospital, Toyama, Japan. Electronic address:
Med Oncol
December 2023
Department of Medical Biology, Faculty of Medicine, Ankara University, Ankara, Turkey.
The cause of hematological cancers is the uncontrolled proliferation of hematopoietic and lymphoid tissues, and chemotherapy is used to treat cancer. However, adverse side effects of chemotherapy are common. Therefore, the use of plant extracts as a method for treating cancer is becoming increasingly popular.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!