Dogs and cats may suffer from a variety of diseases, mainly immune mediated, that require the administration of immunosuppressive drugs. Such therapies can cause adverse effects either by the toxicity of the drugs or as a consequence of immune suppression and associated opportunistic infections. Here we present an, yet unknown, association of and fungus, within cutaneous lesions in a dog under long-term immunosuppressive therapy. The diagnosis of such infections is laborious and not obvious at first glance, since the clinical signs of cutaneous toxoplasmosis, neosporosis or alternariosis are not specific. A further laboratory confirmation is needed. Therefore, we currently recommend that dogs and cats should undergo serologic testing for toxoplasmosis or neosporosis prior to immunosuppressive therapy and a regular dermatological evaluation during the immunosuppressive therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9865179PMC
http://dx.doi.org/10.3390/pathogens12010114DOI Listing

Publication Analysis

Top Keywords

immunosuppressive therapy
12
dogs cats
8
toxoplasmosis neosporosis
8
original association
4
association immunosuppressed
4
immunosuppressed dog
4
dog persistent
4
persistent skin
4
skin lesions
4
lesions dogs
4

Similar Publications

The case report presents a male patient in his mid-60s with a history of hypertension, benign prostatic hyperplasia and chronic kidney disease (CKD). He presented with gradually increasing serum creatinine levels and hyperglobulinemia, leading to suspicion of multiple myeloma. However, subsequent testing revealed features consistent with systemic lupus erythematosus (SLE) and IgG4-related kidney disease (IgG4-RKD).

View Article and Find Full Text PDF

Fungal periprosthetic joint infections (PJIs) are rare but increasingly recognized complications following total joint arthroplasty (TJA). While remains the most common pathogen, non-albicans species and other fungi, such as , have gained prominence. These infections often present with subtle clinical features and affect patients with significant comorbidities or immunosuppression.

View Article and Find Full Text PDF

Synergistic Potential of Antibiotics with Cancer Treatments.

Cancers (Basel)

December 2024

Dipartimento Sanità Pubblica, AUSL Imola, Viale Amendola 8, 40026 Imola, Italy.

Intratumoral microbiota, the diverse community of microorganisms residing within tumor tissues, represent an emerging and intriguing field in cancer biology. These microbial populations are distinct from the well-studied gut microbiota, offering novel insights into tumor biology, cancer progression, and potential therapeutic interventions. Recent studies have explored the use of certain antibiotics to modulate intratumoral microbiota and enhance the efficacy of cancer therapies, showing promising results.

View Article and Find Full Text PDF

Engineered Cellular Therapies for the Treatment of Thoracic Cancers.

Cancers (Basel)

December 2024

Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA.

Thoracic malignancies (lung cancers and malignant pleural mesothelioma) are prevalent worldwide and are associated with high morbidity and mortality. Effective treatments are needed for patients with advanced disease. Cell therapies are a promising approach to the treatment of advanced cancers that make use of immune effector cells that have the ability to mediate antitumor immune responses.

View Article and Find Full Text PDF

Pancreatic cancer is the third leading cause of cancer-related mortality in the United States, with rising incidence and mortality. The receptor for advanced glycation end products (RAGE) and its ligands significantly contribute to pancreatic cancer progression by enhancing cell proliferation, fostering treatment resistance, and promoting a pro-tumor microenvironment via activation of the nuclear factor-kappa B (NF-κB) signaling pathways. This study validated pathway activation in human pancreatic cancer and evaluated the therapeutic efficacy of TTP488 (Azeliragon), a small-molecule RAGE inhibitor, alone and in combination with radiation therapy (RT) in preclinical models of pancreatic cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!