Chronic infection with the hepatitis B virus (HBV) affects an estimated 257 million people worldwide and can lead to liver diseases such as cirrhosis and liver cancer. Viral replication is generally considered not to be cytopathic, and although some HBV proteins may have direct carcinogenic effects, the majority of HBV infection-related disease is related to chronic inflammation resulting from disrupted antiviral responses and aberrant innate immune reactions. Like all cells, healthy and HBV-infected cells communicate with each other, as well as with other cell types, such as innate and adaptive immune cells. They do so by both interacting directly and by secreting factors into their environment. Such factors may be small molecules, such as metabolites, single viral proteins or host proteins, but can also be more complex, such as virions, protein complexes, and extracellular vesicles. The latter are small, membrane-enclosed vesicles that are exchanged between cells, and have recently gained a lot of attention for their potential to mediate complex communication and their potential for therapeutic repurposing. Here, we review how HBV infection affects the communication between HBV-infected cells and cells in their environment. We discuss the impact of these interactions on viral persistence in chronic infection, as well as their relation to HBV infection-related pathology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9866324 | PMC |
http://dx.doi.org/10.3390/pathogens12010029 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!